High order fast Laplace solvers for the Dirichlet problem on general regions

Authors:
Victor Pereyra, Wlodzimierz Proskurowski and Olof Widlund

Journal:
Math. Comp. **31** (1977), 1-16

MSC:
Primary 65N15; Secondary 65B05

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431736-X

MathSciNet review:
0431736

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Highly accurate finite difference schemes are developed for Laplace's equation with the Dirichlet boundary condition on general bounded regions in . A second order accurate scheme is combined with a deferred correction or Richardson extrapolation method to increase the accuracy. The Dirichlet condition is approximated by a method suggested by Heinz-Otto Kreiss. A convergence proof of his, previously not published, is given which shows that, for the interval size *h*, one of the methods has an accuracy of at least in . The linear systems of algebraic equations are solved by a capacitance matrix method. The results of our numerical experiments show that highly accurate solutions are obtained with only a slight additional use of computer time when compared to the results obtained by second order accurate methods.

**[1]**Richard Bartels and James W. Daniel,*A conjugate gradient approach to nonlinear elliptic boundary value problems in irregular regions*, Conference on the Numerical Solution of Differential Equations (Univ. Dundee, Dundee, 1973) Springer, Berlin, 1974, pp. 1–11. Lecture Notes in Math., Vol. 363. MR**0440965****[2]**J. H. Bramble and B. E. Hubbard,*Approximation of derivatives by finite difference methods in elliptic boundary value problems*, Contributions to Differential Equations**3**(1964), 399–410. MR**0166935****[3]**Roland Bulirsch and Josef Stoer,*Fehlerabschätzungen und Extrapolation mit rationalen Funktionen bei Verfahren vom Richardson-Typus*, Numer. Math.**6**(1964), 413–427. MR**0176589**, https://doi.org/10.1007/BF01386092**[4]**Paul Concus and Gene H. Golub,*Use of fast direct methods for the efficient numerical solution of nonseparable elliptic equations*, SIAM J. Numer. Anal.**10**(1973), 1103–1120. MR**0341890**, https://doi.org/10.1137/0710092**[5]**Paul Concus and Gene H. Golub,*A generalized conjugate gradient method for nonsymmetric systems of linear equations*, Computing methods in applied sciences and engineering (Second Internat. Sympos., Versailles, 1975) Springer, Berlin, 1976, pp. 56–65. Lecture Notes in Econom. and Math. Systems, Vol. 134. MR**0468130****[6]**D. Fischer, G. Golub, O. Hald, C. Leiva, and O. Widlund,*On Fourier-Toeplitz methods for separable elliptic problems*, Math. Comp.**28**(1974), 349–368. MR**0415995**, https://doi.org/10.1090/S0025-5718-1974-0415995-2**[7]**George E. Forsythe and Wolfgang R. Wasow,*Finite-difference methods for partial differential equations*, Applied Mathematics Series, John Wiley & Sons, Inc., New York-London, 1960. MR**0130124****[8]**Eugene Isaacson and Herbert Bishop Keller,*Analysis of numerical methods*, John Wiley & Sons, Inc., New York-London-Sydney, 1966. MR**0201039****[9]**A. JAMESON,*Accelerated Iteration Schemes for Transonic Flow Calculations Using Fast Poisson Solvers*, ERDA Report C00-3077-82, New York Univ.. 1975.**[10]**D. P. O'LEARY,*Hybrid Conjugate Gradient Algorithms for Elliptic Systems*, Report CS-76-548, Computer Science Dept., Stanford Univ., 1976.**[11]**E. D. MARTIN, "Progress in application of direct elliptic solvers for transonic flow computations,"*Aerodynamics Analyses Requiring Advanced Computers*, NASA SP-347, 1975. (To appear.)**[12]**E. Dale Martin,*A fast semidirect method for computing transonic aerodynamic flows*, AIAA J.**14**(1976), no. 7, 914–922. MR**0459290**, https://doi.org/10.2514/3.61432**[13]**Victor Pereyra,*Accelerating the convergence of discretization algorithms*, SIAM J. Numer. Anal.**4**(1967), 508–533. MR**0221726**, https://doi.org/10.1137/0704046**[14]**Victor Pereyra,*Iterated deferred corrections for nonlinear operator equations*, Numer. Math.**10**(1967), 316–323. MR**0221760**, https://doi.org/10.1007/BF02162030**[15]**Victor Pereyra,*Iterated deferred corrections for nonlinear boundary value problems*, Numer. Math.**11**(1968), 111–125. MR**0225498**, https://doi.org/10.1007/BF02165307**[16]**Victor Pereyra,*Highly accurate numerical solution of casilinear elliptic boundary-value problems in 𝑛 dimensions*, Math. Comp.**24**(1970), 771–783. MR**0288970**, https://doi.org/10.1090/S0025-5718-1970-0288970-5**[17]**V. PEREYRA,*High Order Finite Difference Solution of Differential Equations*, Report CS-73-348, Computer Science Dept., Stanford Univ., 1973.**[18]**Wlodzimierz Proskurowski and Olof Widlund,*On the numerical solution of Helmholtz’s equation by the capacitance matrix method*, Math. Comp.**30**(1976), no. 135, 433–468. MR**0421102**, https://doi.org/10.1090/S0025-5718-1976-0421102-4**[19]**E. A. Volkov,*Investigation of a method for increasing the accuracy of the method of nets in the solution of the Poisson equation*, Vyčisl. Mat.**1**(1957), 62–80 (Russian). MR**0114307****[20]**Wolfgang Wasow,*Discrete approximations to elliptic differential equations*, Z. Angew. Math. Phys.**6**(1955), 81–97. MR**0080369**, https://doi.org/10.1007/BF01607295**[21]**O. WIDLUND, "A Lanczos method for a class of non-symmetric systems of linear equations." (Preprint.)

Retrieve articles in *Mathematics of Computation*
with MSC:
65N15,
65B05

Retrieve articles in all journals with MSC: 65N15, 65B05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431736-X

Article copyright:
© Copyright 1977
American Mathematical Society