Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Finite element methods for elliptic equations using nonconforming elements


Author: Garth A. Baker
Journal: Math. Comp. 31 (1977), 45-59
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1977-0431742-5
MathSciNet review: 0431742
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A finite element method is developed for approximating the solution of the Dirichlet problem for the biharmonic operator, as a canonical example of a higher order elliptic boundary value problem.

The solution is approximated by special choices of classes of discontinuous functions, piecewise polynomial functions, by virtue of a special variational formulation of the boundary value problem. The approximating functions are not required to satisfy the prescribed boundary conditions.

Optimal error estimates are derived in Sobolev spaces.


References [Enhancements On Off] (What's this?)

  • [1] I. BABUŠKA & M. ZLÁMAL, "Nonconforming elements in the finite element method with penalty," SIAM J. Numer. Anal., v. 10, 1973, pp. 863-875. MR 49 # 10168. MR 0345432 (49:10168)
  • [2] G. BAKER, Projection Methods for Boundary Value Problems for Elliptic and Parabolic Equations with Discontinuous Coefficients, Ph. D. Thesis, Cornell Univ., 1973.
  • [3] J. H. BRAMBLE, T. DUPONT & V. THOMÉE, "Projection methods for Dirichlet's problem in approximating polygonal domains with boundary-value corrections," Math. Comp., v. 26, 1972, pp. 869-879. MR 49 # 8397. MR 0343657 (49:8397)
  • [4] J. H. BRAMBLE & S. R. HILBERT, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation," SIAM J. Numer. Anal., v. 7, 1970, pp. 112-124. MR 41 #7819. MR 0263214 (41:7819)
  • [5] J. H. BRAMBLE & A. H. SCHATZ, "Least squares methods for 2mth order elliptic boundary-value problems," Math. Comp., v. 25, 1971, pp. 1-32. MR 45 # 4657. MR 0295591 (45:4657)
  • [6] J. L. LIONS & E. MAGENES, Problèmes aux Limites Non Homogènes et Applications, Vols. 1, 2, Dunod, Paris, 1968. MR 40 # 512, # 513. MR 0247243 (40:512)
  • [7] J. A. NITSCHE, "Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind," Abh. Math. Sem. Univ. Hamburg, v. 36, 1971, pp. 9-15. MR 49 # 6649. MR 0341903 (49:6649)
  • [8] M. SCHECHTER, "On $ {L^p}$ estimates and regularity. II," Math. Scand., v. 13, 1963, pp. 47-69. MR 32 # 6052. MR 0188616 (32:6052)
  • [9] G. STRANG, "The finite element method and approximation theory," in Numerical Solution of Partial Differential Equations, II (SYNSPADE 1970), (Proc. Sympos., Univ. of Maryland, 1970), edited by B. E. Hubbard, Academic Press, New York, 1971, pp. 547-583. MR 44 # 4926. MR 0287723 (44:4926)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0431742-5
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society