Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

An iterative solution method for linear systems of which the coefficient matrix is a symmetric $ M$-matrix


Authors: J. A. Meijerink and H. A. van der Vorst
Journal: Math. Comp. 31 (1977), 148-162
MSC: Primary 65F10
DOI: https://doi.org/10.1090/S0025-5718-1977-0438681-4
MathSciNet review: 0438681
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A particular class of regular splittings of not necessarily symmetric M-matrices is proposed. If the matrix is symmetric, this splitting is combined with the conjugate-gradient method to provide a fast iterative solution algorithm. Comparisons have been made with other well-known methods. In all test problems the new combination was faster than the other methods.


References [Enhancements On Off] (What's this?)

  • [1] J. W. DANIEL, "The conjugate gradient method for linear and nonlinear operator equations," SIAM J. Numer. Anal., v. 4, 1967, pp. 10-26. MR 36 #1076. MR 0217987 (36:1076)
  • [2] KY FAN, "Note on M-matrices," Quart. J. Math. Oxford Ser. (2), v. 11, 1960, pp. 43-49. MR 22 #8024. MR 0117242 (22:8024)
  • [3] M. R. HESTENES, The Conjugate-Gradient Method for Solving Linear Systems, Proc. Sympos. Appl. Math., vol. VI, Numerical Analysis, McGraw-Hill, New York, 1956, pp. 83-102. MR 18, 824. MR 0084178 (18:824c)
  • [4] H. S. PRICE & K. H. COATS, "Direct methods in reservoir simulation," Soc. Petroleum Engrs. J., v. 14, 1974, pp. 295-308.
  • [5] J. K. REID, "The use of conjugate gradients for systems of linear equations possessing 'Property A'," SIAM J. Numer. Anal., v. 9, 1972, pp. 325-332. MR 46 #4697. MR 0305567 (46:4697)
  • [6] H. L. STONE, "Iterative solution of implicit approximations of multidimensional partial differential equations," SIAM J. Numer. Anal., v. 5, 1968, pp. 530-558. MR 38 #6780. MR 0238504 (38:6780)
  • [7] R. S. VARGA, Matrix Iterative Analysis, Prentice-Hall, Englewood Cliffs, N.J., 1962. MR 28 #1725. MR 0158502 (28:1725)
  • [8] J. H. WILKINSON & C. REINSCH, Linear Algebra, Springer-Verlag, Berlin and New York, 1971. MR 0461856 (57:1840)
  • [9] J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon Press, Oxford, 1965. MR 32 #1894. MR 0184422 (32:1894)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65F10

Retrieve articles in all journals with MSC: 65F10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0438681-4
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society