Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Growth of partial sums of divergent series


Author: R. P. Boas
Journal: Math. Comp. 31 (1977), 257-264
MSC: Primary 65B15
MathSciNet review: 0440862
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $ \Sigma f(n)$ be a divergent series of decreasing positive terms, with partial sums $ {s_n}$, where f decreases sufficiently smoothly; let $ \varphi (x) = \smallint _1^xf(t)dt$ and let $ \psi $ be the inverse of $ \varphi $. Let $ {n_A}$ be the smallest integer n such that $ {s_n} \geqslant A$ but $ {s_{n - 1}} < A(A = 2,3, \ldots )$; let $ \gamma = \lim \{ \Sigma _1^nf(k) - \varphi (n)\} $ be the analog of Euler's constant; let $ m = [\psi (A - \gamma )]$. Call $ \omega $ a Comtet function for $ \Sigma f(n)$ if $ {n_A} = m$ when the fractional part of $ \psi (A - \gamma )$ is less than $ \omega (A)$ and $ {n_A} = m + 1$ when the fractional part of $ \psi (A - \gamma )$ is greater than $ \omega (A)$. It has been conjectured that $ \omega (A) = \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} $ is a Comtet function for $ \Sigma 1/n$. It is shown that in general there is a Comtet function of the form

$\displaystyle \omega (A) = \frac{1}{2} + \frac{1}{{24}}\{ \vert f\prime (m)\vert/f(m)\} (1 + o(1)).$

For $ \Sigma 1/n$ there is a Comtet function of the form $ \raise.5ex\hbox{$\scriptstyle 1$}\kern-.1em/ \kern-.15em\lower.25ex\hbox{$\scriptstyle 2$} + 1/(24m) - \{ 1/48{m^2})\} (1 + o(1))$. Some numerical results are presented.

References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65B15

Retrieve articles in all journals with MSC: 65B15


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1977-0440862-0
PII: S 0025-5718(1977)0440862-0
Article copyright: © Copyright 1977 American Mathematical Society