The numerical solution of boundary value problems for stiff differential equations

Authors:
Joseph E. Flaherty and R. E. O'Malley

Journal:
Math. Comp. **31** (1977), 66-93

MSC:
Primary 65L10

DOI:
https://doi.org/10.1090/S0025-5718-1977-0657396-0

MathSciNet review:
0657396

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The numerical solution of boundary value problems for certain stiff ordinary differential equations is studied. The methods developed use singular perturbation theory to construct approximate numerical solutions which are valid asymptotically; hence, they have the desirable feature of becoming more accurate as the equations become stiffer. Several numerical examples are presented which demonstrate the effectiveness of these methods.

**[1]**L. R. Abrahamsson, H. B. Keller, and H. O. Kreiss,*Difference approximations for singular perturbations of systems of ordinary differential equations*, Numer. Math.**22**(1974), 367–391. MR**0388784**, https://doi.org/10.1007/BF01436920**[2]**Richard C. Aiken and Leon Lapidus,*An effective numerical integration method for typical stiff systems*, AIChE J.**20**(1974), no. 2, 368–375. MR**0395228**, https://doi.org/10.1002/aic.690200225**[3]**Paul T. Boggs,*An algorithm, based on singular perturbation theory, for ill-conditioned minimization problems*, SIAM J. Numer. Anal.**14**(1977), no. 5, 830–843. MR**0519600**, https://doi.org/10.1137/0714056**[4]**Roland Bulirsch and Josef Stoer,*Numerical treatment of ordinary differential equations by extrapolation methods*, Numer. Math.**8**(1966), 1–13. MR**0191095**, https://doi.org/10.1007/BF02165234**[5]**Julian D. Cole,*Perturbation methods in applied mathematics*, Blaisdell Publishing Co. Ginn and Co., Waltham, Mass.-Toronto, Ont.-London, 1968. MR**0246537****[6]**S. D. Conte,*The numerical solution of linear boundary value problems*, SIAM Rev.**8**(1966), 309–321. MR**0203945**, https://doi.org/10.1137/1008063**[7]**S. D. CONTE & C. de BOOR,*Elementary Numerical Analysis*, 2nd ed., McGraw-Hill, New York, 1972, Chapter 5.**[8]**Fred Dorr,*The numerical solution of singular perturbations of boundary value problems*, SIAM J. Numer. Anal.**7**(1970), 281–313. MR**0267781**, https://doi.org/10.1137/0707021**[9]**Fred W. Dorr,*An example of ill-conditioning in the numerical solution of singular perturbation problems*, Math. Comp.**25**(1971), 271–283. MR**0297142**, https://doi.org/10.1090/S0025-5718-1971-0297142-0**[10]**W. E. FERGUSON, JR., "A singularly perturbed linear two-point boundary-value problem," Ph.D. Dissertation, California Inst. Tech., 1975.**[11]**Paul C. Fife,*Semilinear elliptic boundary value problems with small parameters*, Arch. Rational Mech. Anal.**52**(1973), 205–232. MR**0374665**, https://doi.org/10.1007/BF00247733**[12]**Paul C. Fife,*Transition layers in singular perturbation problems*, J. Differential Equations**15**(1974), 77–105. MR**0330665**, https://doi.org/10.1016/0022-0396(74)90088-6**[13]**Nanny Fröman and Per Olof Fröman,*JWKB approximation. Contributions to the theory*, North-Holland Publishing Co., Amsterdam, 1965. MR**0173481****[14]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[15]**P. W. Hemker,*A method of weighted one-sided differences for stiff boundary value problems with turning points*, Mathematisch Centrum, Amsterdam, 1974. Mathematisch Centrum, Afdeling Numerieke Wiskunde NW 9/74. MR**0351096****[16]**F. A. Howes,*The asymptotic solution of a class of singularly perturbed nonlinear boundary value problems via differential inequalities*, SIAM J. Math. Anal.**9**(1978), no. 2, 215–249. MR**0477345**, https://doi.org/10.1137/0509017**[17]**Herbert B. Keller,*Accurate difference methods for linear ordinary differential systems subject to linear constraints*, SIAM J. Numer. Anal.**6**(1969), 8–30. MR**0253562**, https://doi.org/10.1137/0706002**[18]**Herbert B. Keller,*Accurate difference methods for nonlinear two-point boundary value problems*, SIAM J. Numer. Anal.**11**(1974), 305–320. MR**0351098**, https://doi.org/10.1137/0711028**[19]**Herbert B. Keller and Tuncer Cebeci,*Accurate numerical methods for boundary-layer flows. II. Two-dimensional turbulent flows*, AIAA J.**10**(1972), 1193–1199. MR**0311207**, https://doi.org/10.2514/3.50349**[20]**H. B. Keller and A. B. White Jr.,*Difference methods for boundary value problems in ordinary differential equations*, SIAM J. Numer. Anal.**12**(1975), no. 5, 791–802. MR**0413513**, https://doi.org/10.1137/0712059**[21]**M. Lentini and V. Pereyra,*Boundary problem solvers for first order systems based on deferred corrections*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 293–315. MR**0488787****[22]**Bengt Lindberg,*On a dangerous property of methods for stiff differential equations*, Nordisk Tidskr. Informationsbehandling (BIT)**14**(1974), 430–436. MR**0362909****[23]**D. B. MacMillan,*Asymptotic methods for systems of differential equations in which some variables have very short response times*, SIAM J. Appl. Math.**16**(1968), 704–722. MR**0234084**, https://doi.org/10.1137/0116058**[24]**James A. M. McHugh,*An historical survey of ordinary linear differential equations with a large parameter and turning points*, Arch. History Exact Sci.**7**(1971), no. 4, 277–324. MR**1554147**, https://doi.org/10.1007/BF00328046**[25]**W. L. Miranker,*Numerical methods of boundary layer type for stiff systems of differential equations*, Computing (Arch. Elektron. Rechnen)**11**(1973), no. 3, 221–234 (English, with German summary). MR**0386276****[26]**W. L. Miranker and J. P. Morreeuw,*Semianalytic numerical studies of turning points arising in stiff boundary value problems*, Math. Comput.**28**(1974), 1017–1034. MR**0381329**, https://doi.org/10.1090/S0025-5718-1974-0381329-5**[27]**David E. Muller,*A method for solving algebraic equations using an automatic computer*, Math. Tables Aids Comput.**10**(1956), 208–215. MR**0083822**, https://doi.org/10.1090/S0025-5718-1956-0083822-0**[28]**W. D. Murphy,*Numerical analysis of boundary-layer problems in ordinary differential equations*, Math. Comp.**21**(1967), 583–596. MR**0225496**, https://doi.org/10.1090/S0025-5718-1967-0225496-9**[29]**Robert E. O’Malley Jr.,*Introduction to singular perturbations*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Applied Mathematics and Mechanics, Vol. 14. MR**0402217****[30]**R. E. O’Malley Jr.,*On multiple solutions of a singular perturbation problem*, Arch. Rational Mech. Anal.**49**(1972/73), 89–98. MR**0335985**, https://doi.org/10.1007/BF00281412**[31]**R. E. O’Malley Jr.,*Phase-plane solutions to some singular perturbation problems*, J. Math. Anal. Appl.**54**(1976), no. 2, 449–466. MR**0450722**, https://doi.org/10.1016/0022-247X(76)90214-6**[32]**R. E. O’Malley Jr.,*Boundary layer methods for ordinary differential equations with small coefficients multiplying the highest derivatives*, Constructive and computational methods for differential and integral equations (Sympos., Indiana Univ., Bloomington, Ind., 1974) Springer, Berlin, 1974, pp. 363–389. Lecture Notes in Math., Vol. 430. MR**0486872****[33]**Robert E. O’Malley Jr. and Joseph B. Keller,*Loss of boundary conditions in the asymptotic solution of linear ordinary differential equations. II. Boundary value problems*, Comm. Pure Appl. Math.**21**(1968), 263–270. MR**0224929**, https://doi.org/10.1002/cpa.3160210305**[34]**F. W. J. Olver,*Asymptotics and special functions*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1974. Computer Science and Applied Mathematics. MR**0435697****[35]**S. V. PARTER, "Singular perturbations of second order differential equations." (Unpublished.)**[36]**Carl E. Pearson,*On a differential equation of boundary layer type*, J. Math. and Phys.**47**(1968), 134–154. MR**0228189****[37]**Carl E. Pearson,*On non-linear ordinary differential equations of boundary layer type.*, J. Math. and Phys.**47**(1968), 351–358. MR**0237107****[38]**M. R. SCOTT & H. A. WATTS,*Support-A Computer Code for Two-Point Boundary-Value Problems via Orthonormalization*, Sandia Laboratories Report SAND 75-0198, June 1975.**[39]**S. TIMOSHENKO,*Strength of Materials, Part*II,*Advanced Theory and Problems*, 3rd ed., Van Nostrand, Princeton, N. J., 1956.**[40]**M. I. Višik and L. A. Lyusternik,*Initial jump for nonlinear differential equations containing a small parameter*, Soviet Math. Dokl.**1**(1960), 749–752. MR**0120427****[41]**Wolfgang Wasow,*On the asymptotic solution of boundary value problems for ordinary differential equations containing a parameter*, J. Math. Phys. Mass. Inst. Tech.**23**(1944), 173–183. MR**0010907**, https://doi.org/10.1002/sapm1944231173**[42]**Wolfgang Wasow,*Singular perturbations of boundary value problems for nonlinear differential equations of the second order*, Comm. Pure Appl. Math.**9**(1956), 93–113. MR**0079161**, https://doi.org/10.1002/cpa.3160090107**[43]**Wolfgang Wasow,*Connection problems for asymptotic series*, Bull. Amer. Math. Soc.**74**(1968), 831–853. MR**0228757**, https://doi.org/10.1090/S0002-9904-1968-12055-5**[44]**Ralph A. Willoughby (ed.),*Stiff differential systems*, Plenum Press, New York-London, 1974. The IBM Research Symposia Series. MR**0343619****[45]**J. YARMISH,*Aspects of the Numerical and Theoretical Treatment of Singular Perturbation*, Doctoral Dissertation, New York Univ., 1972.**[46]**Joshua Yarmish,*Newton’s method techniques for singular perturbations*, SIAM J. Math. Anal.**6**(1975), 661–680. MR**0426448**, https://doi.org/10.1137/0506058

Retrieve articles in *Mathematics of Computation*
with MSC:
65L10

Retrieve articles in all journals with MSC: 65L10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0657396-0

Article copyright:
© Copyright 1977
American Mathematical Society