Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Interior maximum norm estimates for finite element methods


Authors: A. H. Schatz and L. B. Wahlbin
Journal: Math. Comp. 31 (1977), 414-442
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1977-0431753-X
MathSciNet review: 0431753
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Interior a priori error estimates in the maximum norm are derived from interior Ritz-Galerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on quasi-uniform meshes.

It is shown that the error in an interior domain $ {\Omega _1}$ can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain $ {\Omega _1}$.


References [Enhancements On Off] (What's this?)

  • [1] I. BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations, Part I (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 1-359. MR 49 #11824. MR 0421106 (54:9111)
  • [2] J. H. BRAMBLE, "A survey of some finite element methods proposed for treating the Dirichlet problem," Advances in Math., v. 16, 1975, pp. 187-196. MR 52 #2245. MR 0381348 (52:2245)
  • [3] J. H. BRAMBLE, J. A. NITSCHE & A. H. SCHATZ, "Maximum-norm interior estimates for Ritz-Galerkin methods," Math. Comp., v. 29, 1975, pp. 677-688. MR 0398120 (53:1975)
  • [4] J. H. BRAMBLE & J. E. OSBORN, "Rate of convergence estimates for nonselfadjoint eigenvalue approximations," Math. Comp., v. 27, 1973, pp. 525-549. MR 51 #2280. MR 0366029 (51:2280)
  • [5] J. H. BRAMBLE & A. H. SCHATZ, "Estimates for spline projections," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge, v. 10, 1976, pp. 5-37. MR 0436620 (55:9563)
  • [6] J. H. BRAMBLE & V. THOMÉE, "Interior maximum norm estimates for some simple finite element methods," Rev. Française Automat. Informat. Recherche Opérationelle Sér. Rouge, v. 8, 1974, pp. 5-18. MR 50 #11808. MR 0359354 (50:11808)
  • [7] J. H. BRAMBLE & M. ZLÁMAL, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809-820. MR 43 #8250. MR 0282540 (43:8250)
  • [8] P. G. CIARLET & P. A. RAVIART, "General Lagrange and Hermite interpolation in $ {R^n}$ with applications to finite element methods," Arch. Retional Mech. Anal., v. 46, 1972, pp. 177-199. MR 49 #1730. MR 0336957 (49:1730)
  • [9] P. G. CIARLET & P. A. RAVIART, "Maximum principle and uniform convergence for the finite element method," Comput. Methods Appl. Mech. Engrg., v. 2, 1973, pp. 17-31. MR 51 #11992. MR 0375802 (51:11992)
  • [10] J. DOUGLAS, JR., T. DUPONT & L. WAHLBIN, "Optimal $ {L_\infty }$ error estimates for Galerkin approximations to solutions of two-point boundary value problems," Math. Comp., v. 29, 1975, pp. 475-483. MR 51 #7298. MR 0371077 (51:7298)
  • [11] S. HILBERT, "A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations," Math. Comp., v. 27, 1973, pp. 81-89. MR 48 #10047. MR 0331715 (48:10047)
  • [12] F. JOHN, "General properties of solutions of linear elliptic partial differential equations," Proc. Sympos. on Spectral Theory and Differential Problems, Oklahoma A & M College, Stillwater, Okla., 1951, pp. 113-175. MR 13, 349. MR 0043990 (13:349d)
  • [13] C. MIRANDA, Partial Differential Equations of Elliptic Type, 2nd rev. ed., Springer-Verlag, Berlin and New York, 1970. MR 0284700 (44:1924)
  • [14] F. NATTERER, "Über die punktweise Konvergenz Finiter Elemente," Numer. Math., v. 25, 1975, pp. 67-77. MR 0474884 (57:14514)
  • [15] J. A. NITSCHE, " $ {L_\infty }$-convergence for finite element approximation," 2nd Conf. on Finite Elements (Rennes, France, May 12-14, 1975).
  • [16] J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for Ritz-Galerkin methods," Math. Comp., v. 28, 1974, pp. 937-958. MR 51 #9525. MR 0373325 (51:9525)
  • [17] M. SCHECHTER, "On $ {L^p}$ estimates and regularity. I," Amer. J. Math., v. 85, 1963, pp. 1-13. MR 32 #6051. MR 0188615 (32:6051)
  • [18] R. SCOTT, "Optimal $ {L^\infty }$ estimates for the finite element method on irregular meshes," Math. Comp., v. 30, 1976, pp. 681-697. MR 0436617 (55:9560)
  • [19] G. STRANG, "Approximation in the finite element method," Numer. Math., v. 19, 1972, pp. 81-98. MR 46 #4677. MR 0305547 (46:4677)
  • [20] G. STRANG & G. FIX, "A Fourier analysis of the finite element variational method." (Unpublished manuscript.)
  • [21] M. F. WHEELER, "An optimal $ {L_\infty }$ error estimate for Galerkin approximations to solutions of two-point boundary value problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 914-917. MR 49 #8399. MR 0343659 (49:8399)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0431753-X
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society