Interior maximum norm estimates for finite element methods

Authors:
A. H. Schatz and L. B. Wahlbin

Journal:
Math. Comp. **31** (1977), 414-442

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431753-X

MathSciNet review:
0431753

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Interior a priori error estimates in the maximum norm are derived from interior Ritz-Galerkin equations which are common to a class of methods used in approximating solutions of second order elliptic boundary value problems. The estimates are valid for a large class of piecewise polynomial subspaces used in practice, which are defined on quasi-uniform meshes.

It is shown that the error in an interior domain can be estimated with the best order of accuracy that is possible locally for the subspaces used plus the error in a weaker norm over a slightly larger domain which measures the effects from outside of the domain .

**[1]**Ivo Babuška and A. K. Aziz,*Survey lectures on the mathematical foundations of the finite element method*, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR**0421106****[2]**James H. Bramble,*A survey of some finite element methods proposed for treating the Dirichlet problem*, Advances in Math.**16**(1975), 187–196. MR**0381348**, https://doi.org/10.1016/0001-8708(75)90150-4**[3]**James H. Bramble, Joachim A. Nitsche, and Alfred H. Schatz,*Maximum-norm interior estimates for Ritz-Galerkin methods*, Math. Comput.**29**(1975), 677–688. MR**0398120**, https://doi.org/10.1090/S0025-5718-1975-0398120-7**[4]**J. H. Bramble and J. E. Osborn,*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**0366029**, https://doi.org/10.1090/S0025-5718-1973-0366029-9**[5]**J. H. Bramble and A. H. Schatz,*Estimates for spline projections*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér.**10**(1976), no. R-2, 5–37. MR**0436620****[6]**J. H. Bramble and V. Thomée,*Interior maximum norm estimates for some simple finite element methods*, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge**8**(1974), no. R-2, 5–18 (English, with loose French summary). MR**0359354****[7]**James H. Bramble and Miloš Zlámal,*Triangular elements in the finite element method*, Math. Comp.**24**(1970), 809–820. MR**0282540**, https://doi.org/10.1090/S0025-5718-1970-0282540-0**[8]**P. G. Ciarlet and P.-A. Raviart,*General Lagrange and Hermite interpolation in 𝑅ⁿ with applications to finite element methods*, Arch. Rational Mech. Anal.**46**(1972), 177–199. MR**0336957**, https://doi.org/10.1007/BF00252458**[9]**P. G. Ciarlet and P.-A. Raviart,*Maximum principle and uniform convergence for the finite element method*, Comput. Methods Appl. Mech. Engrg.**2**(1973), 17–31. MR**0375802**, https://doi.org/10.1016/0045-7825(73)90019-4**[10]**Jim Douglas Jr., Todd Dupont, and Lars Wahlbin,*Optimal 𝐿_{∞} error estimates for Galerkin approximations to solutions of two-point boundary value problems*, Math. Comp.**29**(1975), 475–483. MR**0371077**, https://doi.org/10.1090/S0025-5718-1975-0371077-0**[11]**Stephen Hilbert,*A mollifier useful for approximations in Sobolev spaces and some applications to approximating solutions of differential equations*, Math. Comp.**27**(1973), 81–89. MR**0331715**, https://doi.org/10.1090/S0025-5718-1973-0331715-3**[12]**Fritz John,*General properties of solutions of linear elliptic partial differential equations*, Proceedings of the Symposium on Spectral Theory and Differential Problems, Oklahoma Agricultural and Mechanical College, Stillwater, Okla., 1951, pp. 113–175. MR**0043990****[13]**Carlo Miranda,*Partial differential equations of elliptic type*, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 2, Springer-Verlag, New York-Berlin, 1970. Second revised edition. Translated from the Italian by Zane C. Motteler. MR**0284700****[14]**Frank Natterer,*Über die punktweise Konvergenz finiter Elemente*, Numer. Math.**25**(1975/76), no. 1, 67–77 (German, with English summary). MR**0474884**, https://doi.org/10.1007/BF01419529**[15]**J. A. NITSCHE, " -convergence for finite element approximation," 2*nd Conf. on Finite Elements*(Rennes, France, May 12-14, 1975).**[16]**Joachim A. Nitsche and Alfred H. Schatz,*Interior estimates for Ritz-Galerkin methods*, Math. Comp.**28**(1974), 937–958. MR**0373325**, https://doi.org/10.1090/S0025-5718-1974-0373325-9**[17]**Martin Schechter,*On 𝐿^{𝑝} estimates and regularity. I*, Amer. J. Math.**85**(1963), 1–13. MR**0188615**, https://doi.org/10.2307/2373179**[18]**Ridgway Scott,*Optimal 𝐿^{∞} estimates for the finite element method on irregular meshes*, Math. Comp.**30**(1976), no. 136, 681–697. MR**0436617**, https://doi.org/10.1090/S0025-5718-1976-0436617-2**[19]**Gilbert Strang,*Approximation in the finite element method*, Numer. Math.**19**(1972), 81–98. MR**0305547**, https://doi.org/10.1007/BF01395933**[20]**G. STRANG & G. FIX, "A Fourier analysis of the finite element variational method." (Unpublished manuscript.)**[21]**Mary Fanett Wheeler,*An optimal 𝐿_{∞} error estimate for Galerkin approximations to solutions of two-point boundary value problems*, SIAM J. Numer. Anal.**10**(1973), 914–917. MR**0343659**, https://doi.org/10.1137/0710077

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0431753-X

Article copyright:
© Copyright 1977
American Mathematical Society