Some classes of generating functions for the Laguerre and Hermite polynomials
Author:
M. E. Cohen
Journal:
Math. Comp. 31 (1977), 511518
MSC:
Primary 33A65
MathSciNet review:
0442323
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: In the first half of the article, we present two theorems which give, as special cases, a number of new classes of generating functions for the Laguerre polynomial. These formulae extend the recent results of Carlitz [2] and others. The latter part of our work deals with two theorems involving new generating functions for the Hermite and generalized Hermite polynomials, thus generalizing some wellknown expansions. The method of proof adopted in this paper differs from that of previous workers.
 [1]
J.
W. Brown, On zero type sets of Laguerre polynomials, Duke
Math. J. 35 (1968), 821–823. MR 0234027
(38 #2348)
 [2]
L.
Carlitz, Some generating functions for Laguerre polynomials,
Duke Math. J. 35 (1968), 825–827. MR 0240351
(39 #1700)
 [3]
S.
K. Chatterjea, Some generating functions, Duke Math. J.
32 (1965), 563–564. MR 0181762
(31 #5989)
 [4]
M.
E. Cohen, On expansion problems: new classes of formulas for the
classical functions, SIAM J. Math. Anal. 7 (1976),
no. 5, 702–712. MR 0442305
(56 #691)
 [5]
M.
E. Cohen, Generating functions for the Jacobi
polynomial, Proc. Amer. Math. Soc.
57 (1976), no. 2,
271–275. MR 0404725
(53 #8525), http://dx.doi.org/10.1090/S0002993919760404725X
 [6]
Arthur
Erdélyi, Wilhelm
Magnus, Fritz
Oberhettinger, and Francesco
G. Tricomi, Higher transcendental functions. Vols. I, II,
McGrawHill Book Company, Inc., New YorkTorontoLondon, 1953. Based, in
part, on notes left by Harry Bateman. MR 0058756
(15,419i)
 [7]
H.
W. Gould and A.
T. Hopper, Operational formulas connected with two generalizations
of Hermite polynomials, Duke Math. J. 29 (1962),
51–63. MR
0132853 (24 #A2689)
 [8]
R.
P. Gupta and G.
C. Jain, A generalized Hermite distribution and its
properties, SIAM J. Appl. Math. 27 (1974),
359–363. MR 0350087
(50 #2580)
 [9]
Yudell
L. Luke, Mathematical functions and their approximations,
Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New
YorkLondon, 1975. MR 0501762
(58 #19039)
 [10]
David
Zeitlin, A new class of generating functions
for hypergeometric polynomials., Proc. Amer.
Math. Soc. 25
(1970), 405–412. MR 0264123
(41 #8719), http://dx.doi.org/10.1090/S00029939197002641233
 [1]
 J. W. BROWN, "On zero type sets of Laguerre polynomials," Duke Math. J., v. 35, 1968, pp. 821823. MR 38 #2348. MR 0234027 (38:2348)
 [2]
 L. CARLITZ, "Some generating functions for Laguerre polynomials," Duke Math. J., v. 35, 1968, pp. 825827. MR 39 #1700. MR 0240351 (39:1700)
 [3]
 S. K. CHATTERJEA, "Some generating functions," Duke Math. J., v. 32, 1965, pp. 563564. MR 31 #5989. MR 0181762 (31:5989)
 [4]
 M. E. COHEN, "On expansion problems: New classes of formulas for the classical functions," SIAM J. Math. Anal, v. 7, 1976, pp. 702712. MR 0442305 (56:691)
 [5]
 M. E. COHEN, "Generating functions for the Jacobi polynomial," Proc. Amer. Math. Soc., v. 57, 1976, pp. 271275. MR 0404725 (53:8525)
 [6]
 A. ERDÉLYI et al., Higher Transcendental Functions, Vols. I, II, McGrawHill, New York, 1953. MR 15, 419. MR 0058756 (15:419i)
 [7]
 H. W. GOULD & A. T. HOPPER, "Operational formulas connected with two generalizations of Hermite polynomials," Duke Math. J., v. 29, 1962, pp. 5163. MR 24 #A2689. MR 0132853 (24:A2689)
 [8]
 R. P. GUPTA & G. C. JAIN, "A generalized Hermite distribution and its properties," SIAM J. Appl. Math., v. 27, 1974, pp. 359363. MR 50 #2580. MR 0350087 (50:2580)
 [9]
 Y. L. LUKE, Mathematical Functions and Their Approximations, Academic Press, New York, 1975. MR 0501762 (58:19039)
 [10]
 D. ZEITLIN, "A new class of generating functions for hypergeometric polynomials," Proc. Amer. Math. Soc., v. 25, 1970, pp. 405412. MR 41 #8719. MR 0264123 (41:8719)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
33A65
Retrieve articles in all journals
with MSC:
33A65
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704423231
PII:
S 00255718(1977)04423231
Keywords:
Generating functions,
Hermite polynomial,
hypergeometric function,
incomplete gamma function,
Laguerre polynomial,
operators
Article copyright:
© Copyright 1977
American Mathematical Society
