Application of method of collocation on lines for solving nonlinear hyperbolic problems

Author:
E. N. Houstis

Journal:
Math. Comp. **31** (1977), 443-456

MSC:
Primary 65N35

DOI:
https://doi.org/10.1090/S0025-5718-1977-0443379-2

MathSciNet review:
0443379

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A collocation on lines procedure based on piecewise polynomials is applied to initial/boundary value problems for nonlinear hyperbolic partial differential equations. Optimal order a priori estimates are obtained for the error of approximation. The Crank-Nicholson discretization in time is studied and convergence rates of the collocation-Crank-Nicholson procedure are established. Finally, the superconvergence is verified at particular points for linear hyperbolic problems.

**[1]**I. S. BEREZIN & N. P. ZIDKOV,*Computing Methods*, Vols. I, II, Fizmatgiz, Moscow, 1962; English transl., Addison-Wesley, Reading, Mass.; Pergamon Press, New York, 1965. MR 22 #12685; 30 #4372. MR**0174165 (30:4372)****[2]**E. A. CODDINGTON,*An Introduction to Ordinary Differential Equations*, Prentice-Hall, Englewood Cliffs, N.J., 1961. MR 23 #A3869. MR**0126573 (23:A3869)****[3]**JIM DOUGLAS, JR. & TODD DUPONT, "A finite element collocation method for quasilinear parabolic equations,"*Math. Comp.*, v. 27, 1973, pp. 17-28. MR 49 #4266. MR**0339508 (49:4266)****[4]**JIM DOUGLAS, JR. & TODD DUPONT, "A super convergence result for the approximate solution of the heat equation by a collocation method,"*Mathematical Foundations of Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, Editor), Academic Press, New York, 1972. MR**0373329 (51:9529)****[5]**JIM DOUGLAS, JR. & TODD DUPONT,*Collocation Methods for Parabolic Equations in a Single Space Variable*(*Based on*-*Piecewise-Polynomial Spaces*), Springer Lecture Notes in Math., Vol. 385, Springer-Verlag, Berlin and New York, 1974. MR**0483559 (58:3551)****[6]**E. N. HOUSTIS,*Finite Element Methods for Solving Initial/Boundary Value Problems*, Doctoral thesis, Purdue University, 1974.**[7]**L. V. KANTOROVIČ, "Sur une méthode de resolution approchée d'equations différentielles aux derivées partielles,"*C. R. Acad.*(*Dokl.*)*Sci. URSS*, v. 2, 1934, pp. 532-536. (Russian)**[8]**È. B. KARPILOVSKAJA, "Convergence of a collocation method for certain boundaryvalue problems of mathematical physics,"*Sibirsk. Mat. Ž.*, v. 4, 1963, pp. 632-640. (Russian) MR 27 #6402. MR**0156479 (27:6402)****[9]**M. H. SCHULTZ,*Spline Analysis*, Prentice-Hall, Englewood Cliffs, N.J., 1973. MR 50 #15270. MR**0362832 (50:15270)****[10]**Yu. P. YARTSEV, "Convergence of the collocation method on lines,"*Differencial'nye Uravnenija*, v. 3, 1967, pp. 1606-1613 =*Differential Equations*, v. 3, 1967, pp. 838-842. MR**0221768 (36:4820)****[11]**Yu. P. YARTSEV, "The method of line collocation,"*Differencial'nye Uravnenija*, v. 4, 1968, pp. 925-932 =*Differential Equations*, v. 4, 1968, pp. 481-485.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N35

Retrieve articles in all journals with MSC: 65N35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0443379-2

Keywords:
Collocation on lines method,
nonlinear hyperbolic problems

Article copyright:
© Copyright 1977
American Mathematical Society