Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 

 

On maximal finite irreducible subgroups of $ {\rm GL}(n, {\bf Z})$. I. The five and seven dimensional cases


Authors: Wilhelm Plesken and Michael Pohst
Journal: Math. Comp. 31 (1977), 536-551
MSC: Primary 20G05
DOI: https://doi.org/10.1090/S0025-5718-1977-0444789-X
MathSciNet review: 0444789
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: General methods for the determination of maximal finite absolutely irreducible subgroups of $ GL(n,{\mathbf{Z}})$ are described. For $ n = 5,7$ all these groups are computed up to Z-equivalence.


References [Enhancements On Off] (What's this?)

  • [1] R. BÜLOW, Über Dadegruppen in $ GL(5,{\mathbf{Z}})$, Dissertation, Aachen, 1973.
  • [2] R. BÜLOW, J. NEUBÜSER & H. WONDRATSCHEK, "On crystallography in higher dimensions. I, II, III," Acta Cryst., v. A27, 1971, pp. 517-535.
  • [3] Richard Brauer, Über endliche lineare Gruppen von Primzahlgrad, Math. Ann. 169 (1967), 73–96 (German). MR 0206088, https://doi.org/10.1007/BF01399532
  • [4] R. Brauer and C. Nesbitt, On the modular characters of groups, Ann. of Math. (2) 42 (1941), 556–590. MR 0004042, https://doi.org/10.2307/1968918
  • [5] Charles W. Curtis and Irving Reiner, Representation theory of finite groups and associative algebras, Pure and Applied Mathematics, Vol. XI, Interscience Publishers, a division of John Wiley & Sons, New York-London, 1962. MR 0144979
  • [6] E. C. Dade, The maximal finite groups of 4×4 integral matrices, Illinois J. Math. 9 (1965), 99–122. MR 0170958
  • [7] Veikko Ennola, On the characters of the finite unitary groups, Ann. Acad. Sci. Fenn. Ser. A I No. 323 (1963), 35. MR 0156900
  • [8] James E. Humphreys, Introduction to Lie algebras and representation theory, Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathematics, Vol. 9. MR 0323842
  • [9] H. MINKOWSKI, "Zur Theorie der positiven quadratischen Formen," Gesammelte Werke, Band 1, Chelsea, New York, 1958, pp. 212-218.
  • [10] W. PLESKEN, Beiträge zur Bestimmung der endlichen irreduziblen Untergruppen von $ GL(n,{\mathbf{Z}})$ und ihrer ganzzahligen Darstellungen, Dissertation, Aachen, 1974.
  • [11] S. S. Ryškov, The maximal finite groups of integer 𝑛×𝑛 matrices, Dokl. Akad. Nauk SSSR 204 (1972), 561–564 (Russian). MR 0304501
  • [12] S. S. Ryškov, Maximal finite groups of 𝑛×𝑛 integral matrices and full integral automorphism groups of positive quadratic forms (Bravais types), Trudy Mat. Inst. Steklov. 128 (1972), 183–211, 261 (Russian). Collection of articles dedicated to Academician Ivan Matveevič Vinogradov on his eightieth birthday, II. MR 0344199
  • [13] David B. Wales, Finite linear groups in seven variables, Bull. Amer. Math. Soc. 74 (1968), 197–198. MR 0218466, https://doi.org/10.1090/S0002-9904-1968-11939-1
  • [14] H. ZASSENHAUS, "Neuer Beweis der Endlichkeit der Klassenzahl bei unimodularer Äquivalenz endlicher ganzzahliger Substitutionsgruppen," Abh. Math. Sem. Univ. Hamburg, v. 12, 1938, pp. 276-288.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 20G05

Retrieve articles in all journals with MSC: 20G05


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0444789-X
Keywords: Integral matrix groups
Article copyright: © Copyright 1977 American Mathematical Society