On congruences related to the first case of Fermat's last theorem

Author:
Wells Johnson

Journal:
Math. Comp. **31** (1977), 519-526

MSC:
Primary 10B15; Secondary 10A10

DOI:
https://doi.org/10.1090/S0025-5718-1977-0447108-8

MathSciNet review:
0447108

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Solutions to the congruences and are discussed. Congruences of this type arise in the study of the first case of Fermat's Last Theorem. Solutions to these congruences always exist for primes . They are derived from the existence of a primitive cube root of unity . Constructive techniques for finding numerical examples are presented. The results are obtained by examining the *p*-adic expansions of the *p*-adic st roots of unity.

**[1]**A. Arwin,*Über die Lösung der Kongruenz (𝜆+𝐼)𝑝-𝑙𝜆𝑝-𝐼-𝑜(𝑚𝑜𝑑𝑝²)*, Acta Math.**42**(1920), no. 1, 173–190 (German). MR**1555163**, https://doi.org/10.1007/BF02404406**[2]**R. D. Carmichael,*Note on Fermat’s last theorem*, Bull. Amer. Math. Soc.**19**(1913), no. 5, 233–236. MR**1559329**, https://doi.org/10.1090/S0002-9904-1913-02332-2**[3]**L. E. DICKSON,*History of the Theory of Numbers*, vol. II, Carnegie Institution of Washington, Washington, D.C., 1920.**[4]**C. J. EVERETT & N. METROPOLIS, "On the roots of in the*p*-adic field ,"*Notices Amer. Math. Soc.*, v. 22, 1975, p. A-619. Abstract #75T-A229.**[5]**Ioanna Ferentinou-Nikolakopoulou,*A new necessary condition for the existence of a solution to the equation 𝑥^{𝑝}+𝑦^{𝑝}=𝑧^{𝑝} of Fermat*, Bull. Soc. Math. Grèce (N.S.)**6 I**(1965), no. fasc. 2, 222–236 (Greek, with French summary). MR**0205912**

Ioanna Ferentinou-Nikolakopoulou,*Remarks on the article: “A new necessary condition for the existence of a solution to the equation 𝑥^{𝑝}+𝑦^{𝑝}=𝑧^{𝑝} of Fermat”*, Bull. Soc. Math. Grèce (N.S.)**6 II**(1965), no. fasc. 2, 356–357 (Greek, with French summary). MR**0205913****[6]**J. M. GANDHI, "Fermat's Last Theorem I. Some interesting observations for the first case,"*Notices Amer. Math. Soc.*, v. 22, 1975, p. A-486. Abstract #725-A2.**[7]**J. M. GANDHI, "On the first case of Fermat's Last Theorem." (To appear.)**[8]**Wells Johnson,*𝑝-adic proofs of congruences for the Bernoulli numbers*, J. Number Theory**7**(1975), 251–265. MR**0376512**, https://doi.org/10.1016/0022-314X(75)90020-7**[9]**W. MEISSNER, "Über die Lösungen der Kongruenz und ihre Verwertung zur Periodenbestimmung ,"*Sitzungsber. Berlin Math. Gessell.*, v. 13, 1914, pp. 96-107.**[10]**F. POLLACZEK, "Über den grossen Fermat'schen Satz,"*Sitzungsber. Akad. Wiss. Wien*(*Math.*), v. 126 (IIa), 1917, pp. 45-59.**[11]**A. A. TRYPANIS, "On Fermat's last theorem,"*Proc. Internat. Congr. of Mathematicians*(Cambridge, Mass., 1950), vol. 1, Amer. Math. Soc., Providence, R.I., 1952, pp. 301-302.**[12]**H. S. Vandiver,*Note on Fermat’s last theorem*, Trans. Amer. Math. Soc.**15**(1914), no. 2, 202–204. MR**1500973**, https://doi.org/10.1090/S0002-9947-1914-1500973-0

Retrieve articles in *Mathematics of Computation*
with MSC:
10B15,
10A10

Retrieve articles in all journals with MSC: 10B15, 10A10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0447108-8

Keywords:
Congruences,
Fermat's Last Theorem,
*p*-adic roots of unity

Article copyright:
© Copyright 1977
American Mathematical Society