Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On congruences related to the first case of Fermat's last theorem


Author: Wells Johnson
Journal: Math. Comp. 31 (1977), 519-526
MSC: Primary 10B15; Secondary 10A10
DOI: https://doi.org/10.1090/S0025-5718-1977-0447108-8
MathSciNet review: 0447108
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Solutions to the congruences $ {(1 + a)^{{p^n}}} \equiv 1 + {a^{{p^n}}}\pmod {p^{n + 2}}$ and $ {(1 + s)^p} \equiv 1 + {s^p}\pmod {p^n}$ are discussed. Congruences of this type arise in the study of the first case of Fermat's Last Theorem. Solutions to these congruences always exist for primes $ p \equiv 1\;\pmod 6$. They are derived from the existence of a primitive cube root of unity $ \pmod p$. Constructive techniques for finding numerical examples are presented. The results are obtained by examining the p-adic expansions of the p-adic $ (p - 1)$st roots of unity.


References [Enhancements On Off] (What's this?)

  • [1] A. ARWIN, "Über die Lösung der Kongruenz $ {(\lambda + 1)^p} - {\lambda ^p} - 1 \equiv 0\;\pmod {p^2}$," Acta Math., v. 42, 1920, pp. 173-190. MR 1555163
  • [2] R. D. CARMICHAEL, "Note on Fermat's Last Theorem," Bull. Amer. Math. Soc., v. 19, 1913, pp. 233-236. MR 1559329
  • [3] L. E. DICKSON, History of the Theory of Numbers, vol. II, Carnegie Institution of Washington, Washington, D.C., 1920.
  • [4] C. J. EVERETT & N. METROPOLIS, "On the roots of $ {x^m} \pm 1$ in the p-adic field $ {Q_p}$," Notices Amer. Math. Soc., v. 22, 1975, p. A-619. Abstract #75T-A229.
  • [5] I. FERENTINOU-NIKOLAKOPOULOU, "A new necessary condition for the existence of a solution to the equation $ {x^p} + {y^p} = {z^p}$ of Fermat," Bull. Soc. Math. Grèce (N. S.), v. 61, 1965, fasc. 2, pp. 222-236; "Remarks on the article: 'A new necessary condition for the existence of a solution to the equation $ {x^p} + {y^p} = {z^p}$ of Fermat'," ibid., v. 6II, 1965, fasc. 2, pp. 356-357. (Greek) MR 34 #5738a, #5738b. MR 0205913 (34:5738b)
  • [6] J. M. GANDHI, "Fermat's Last Theorem I. Some interesting observations for the first case," Notices Amer. Math. Soc., v. 22, 1975, p. A-486. Abstract #725-A2.
  • [7] J. M. GANDHI, "On the first case of Fermat's Last Theorem." (To appear.)
  • [8] W. JOHNSON, "p-adic proofs of congruences for the Bernoulli numbers," J. Number Theory, v. 7, 1975, pp. 251-265. MR 51 #12687. MR 0376512 (51:12687)
  • [9] W. MEISSNER, "Über die Lösungen der Kongruenz $ {x^{p - 1}} \equiv 1\;\bmod\, {p^m}$ und ihre Verwertung zur Periodenbestimmung $ \bmod\, {p^x}$," Sitzungsber. Berlin Math. Gessell., v. 13, 1914, pp. 96-107.
  • [10] F. POLLACZEK, "Über den grossen Fermat'schen Satz," Sitzungsber. Akad. Wiss. Wien (Math.), v. 126 (IIa), 1917, pp. 45-59.
  • [11] A. A. TRYPANIS, "On Fermat's last theorem," Proc. Internat. Congr. of Mathematicians (Cambridge, Mass., 1950), vol. 1, Amer. Math. Soc., Providence, R.I., 1952, pp. 301-302.
  • [12] H. S. VANDIVER, "Note on Fermat's Last Theorem," Trans. Amer. Math. Soc., v. 15, 1914, pp. 202-204. MR 1500973

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10B15, 10A10

Retrieve articles in all journals with MSC: 10B15, 10A10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0447108-8
Keywords: Congruences, Fermat's Last Theorem, p-adic roots of unity
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society