The infinity norm of a certain type of symmetric circulant matrix
Authors:
W. D. Hoskins and D. S. Meek
Journal:
Math. Comp. 31 (1977), 733737
MSC:
Primary 65F35
MathSciNet review:
0433849
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: An attainable bound for the infinity norm of the inverse of a whole class of symmetric circulant Toeplitz matrices is found. The class of matrices includes those arising from interpolation with both odd and even degree periodic polynomial splines on a uniform mesh.
 [1]
Handbook of mathematical functions, with formulas, graphs, and
mathematical tables, Edited by Milton Abramowitz and Irene A. Stegun,
Dover Publications, Inc., New York, 1966. MR 0208797
(34 #8606)
 [2]
J.
H. Ahlberg, E.
N. Nilson, and J.
L. Walsh, The theory of splines and their applications,
Academic Press, New YorkLondon, 1967. MR 0239327
(39 #684)
 [3]
E.
L. Albasiny and W.
D. Hoskins, Explicit error bounds for periodic splines of odd order
on a uniform mesh, J. Inst. Math. Appl. 12 (1973),
303–318. MR 0341800
(49 #6546)
 [4]
W.
D. Hoskins, Some properties of a certain class of circulant
matrices, Proceedings of the Manitoba Conference on Numerical
Mathematics (Univ. Manitoba, Winnipeg, Man., 1971) Dept. Comput. Sci.,
Univ. Manitoba, Winnipeg, Man., 1971, pp. 361–372. MR 0336162
(49 #938)
 [5]
W.
D. Hoskins and D.
S. Meek, Linear dependence relations for polynomial splines at
midknots, Nordisk Tidskr. Informationsbehandling (BIT)
15 (1975), no. 3, 272–276. MR 0391470
(52 #12291)
 [6]
D. S. MEEK, On the Numerical Construction and Approximation of Some Piecewise Polynomial Functions, Ph.D. thesis, Univ. of Manitoba, Canada, 1973.
 [7]
Thomas
Muir, A treatise on the theory of determinants, Revised and
enlarged by William H. Metzler, Dover Publications, Inc., New York, 1960.
MR
0114826 (22 #5644)
 [8]
Richard
S. Varga, Matrix iterative analysis, PrenticeHall, Inc.,
Englewood Cliffs, N.J., 1962. MR 0158502
(28 #1725)
 [9]
W.
J. Kammerer, G.
W. Reddien, and R.
S. Varga, Quadratic interpolatory splines, Numer. Math.
22 (1974), 241–259. MR 0381235
(52 #2132)
 [1]
 M. ABRAMOWITZ & I. A. STEGUN (Editors), Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables, Dover, New York, 1966. MR 34 #8606. MR 0208797 (34:8606)
 [2]
 J. H. AHLBERG, E. N. NILSON & J. L. WALSH, The Theory of Splines and Their Applications, Academic Press, New York and London, 1967. MR 39 #684. MR 0239327 (39:684)
 [3]
 E. L. ALBASINY & W. D. HOSKINS, "Explicit error bounds for periodic splines of odd order on a uniform mesh," J. Inst. Math. Appl., v. 12, 1973, pp. 303318. MR 49 #6546. MR 0341800 (49:6546)
 [4]
 W. D. HOSKINS, "Some properties of a certain class of circulant matrices," Proc. Manitoba Conf. on Numerical Mathematics, Univ. of Manitoba, Winnipeg, Canada, 1971, pp. 361372. MR 49 #938. MR 0336162 (49:938)
 [5]
 W. D. HOSKINS & D. S. MEEK, "Linear dependence relations for polynomial splines at midknots," BIT, v. 15, 1975, pp. 272276. MR 52 #12291. MR 0391470 (52:12291)
 [6]
 D. S. MEEK, On the Numerical Construction and Approximation of Some Piecewise Polynomial Functions, Ph.D. thesis, Univ. of Manitoba, Canada, 1973.
 [7]
 T. MUIR, A Treatise on the Theory of Determinants, rev. ed., Dover, New York, 1960. MR 22 #5644. MR 0114826 (22:5644)
 [8]
 R. S. VARGA, Matrix Iterative Analysis, PrenticeHall, Englewood Cliffs, N. J., 1962. MR 28 #1725. MR 0158502 (28:1725)
 [9]
 R. S. VARGA, W. J. KAMMERER & G. W. REDDIEN, "Quadratic interpolatory splines," Numer. Math., v. 22, 1974, pp. 241259. MR 52 #2132. MR 0381235 (52:2132)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65F35
Retrieve articles in all journals
with MSC:
65F35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704338495
PII:
S 00255718(1977)04338495
Keywords:
Infinity norm of circulant matrix,
periodic polynomial splines
Article copyright:
© Copyright 1977
American Mathematical Society
