The infinity norm of a certain type of symmetric circulant matrix

Authors:
W. D. Hoskins and D. S. Meek

Journal:
Math. Comp. **31** (1977), 733-737

MSC:
Primary 65F35

DOI:
https://doi.org/10.1090/S0025-5718-1977-0433849-5

MathSciNet review:
0433849

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An attainable bound for the infinity norm of the inverse of a whole class of symmetric circulant Toeplitz matrices is found. The class of matrices includes those arising from interpolation with both odd and even degree periodic polynomial splines on a uniform mesh.

**[1]**M. ABRAMOWITZ & I. A. STEGUN (Editors),*Handbook of Mathematical Functions, With Formulas, Graphs and Mathematical Tables*, Dover, New York, 1966. MR**34**#8606. MR**0208797 (34:8606)****[2]**J. H. AHLBERG, E. N. NILSON & J. L. WALSH,*The Theory of Splines and Their Applications*, Academic Press, New York and London, 1967. MR**39**#684. MR**0239327 (39:684)****[3]**E. L. ALBASINY & W. D. HOSKINS, "Explicit error bounds for periodic splines of odd order on a uniform mesh,"*J. Inst. Math. Appl.*, v. 12, 1973, pp. 303-318. MR**49**#6546. MR**0341800 (49:6546)****[4]**W. D. HOSKINS, "Some properties of a certain class of circulant matrices,"*Proc. Manitoba Conf. on Numerical Mathematics*, Univ. of Manitoba, Winnipeg, Canada, 1971, pp. 361-372. MR**49**#938. MR**0336162 (49:938)****[5]**W. D. HOSKINS & D. S. MEEK, "Linear dependence relations for polynomial splines at midknots,"*BIT*, v. 15, 1975, pp. 272-276. MR**52**#12291. MR**0391470 (52:12291)****[6]**D. S. MEEK,*On the Numerical Construction and Approximation of Some Piecewise Polynomial Functions*, Ph.D. thesis, Univ. of Manitoba, Canada, 1973.**[7]**T. MUIR,*A Treatise on the Theory of Determinants*, rev. ed., Dover, New York, 1960. MR**22**#5644. MR**0114826 (22:5644)****[8]**R. S. VARGA,*Matrix Iterative Analysis*, Prentice-Hall, Englewood Cliffs, N. J., 1962. MR**28**#1725. MR**0158502 (28:1725)****[9]**R. S. VARGA, W. J. KAMMERER & G. W. REDDIEN, "Quadratic interpolatory splines,"*Numer. Math.*, v. 22, 1974, pp. 241-259. MR**52**#2132. MR**0381235 (52:2132)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65F35

Retrieve articles in all journals with MSC: 65F35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0433849-5

Keywords:
Infinity norm of circulant matrix,
periodic polynomial splines

Article copyright:
© Copyright 1977
American Mathematical Society