The infinity norm of a certain type of symmetric circulant matrix

Authors:
W. D. Hoskins and D. S. Meek

Journal:
Math. Comp. **31** (1977), 733-737

MSC:
Primary 65F35

DOI:
https://doi.org/10.1090/S0025-5718-1977-0433849-5

MathSciNet review:
0433849

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: An attainable bound for the infinity norm of the inverse of a whole class of symmetric circulant Toeplitz matrices is found. The class of matrices includes those arising from interpolation with both odd and even degree periodic polynomial splines on a uniform mesh.

**[1]***Handbook of mathematical functions, with formulas, graphs, and mathematical tables*, Edited by Milton Abramowitz and Irene A. Stegun, Dover Publications, Inc., New York, 1966. MR**0208797****[2]**J. H. Ahlberg, E. N. Nilson, and J. L. Walsh,*The theory of splines and their applications*, Academic Press, New York-London, 1967. MR**0239327****[3]**E. L. Albasiny and W. D. Hoskins,*Explicit error bounds for periodic splines of odd order on a uniform mesh*, J. Inst. Math. Appl.**12**(1973), 303–318. MR**0341800****[4]**W. D. Hoskins,*Some properties of a certain class of circulant matrices*, Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971) Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971, pp. 361–372. MR**0336162****[5]**W. D. Hoskins and D. S. Meek,*Linear dependence relations for polynomial splines at midknots*, Nordisk Tidskr. Informationsbehandling (BIT)**15**(1975), no. 3, 272–276. MR**0391470****[6]**D. S. MEEK,*On the Numerical Construction and Approximation of Some Piecewise Polynomial Functions*, Ph.D. thesis, Univ. of Manitoba, Canada, 1973.**[7]**Thomas Muir,*A treatise on the theory of determinants*, Revised and enlarged by William H. Metzler, Dover Publications, Inc., New York, 1960. MR**0114826****[8]**Richard S. Varga,*Matrix iterative analysis*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1962. MR**0158502****[9]**W. J. Kammerer, G. W. Reddien, and R. S. Varga,*Quadratic interpolatory splines*, Numer. Math.**22**(1974), 241–259. MR**0381235**, https://doi.org/10.1007/BF01406966

Retrieve articles in *Mathematics of Computation*
with MSC:
65F35

Retrieve articles in all journals with MSC: 65F35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0433849-5

Keywords:
Infinity norm of circulant matrix,
periodic polynomial splines

Article copyright:
© Copyright 1977
American Mathematical Society