Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Computation of the solution of $ x\sp{3}+Dy\sp{3}=1$


Authors: H. C. Williams and R. Holte
Journal: Math. Comp. 31 (1977), 778-785
MSC: Primary 10B10
MathSciNet review: 0434946
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A computer technique for finding integer solutions of

$\displaystyle {x^3} + D{y^3} = 1$

is described, and a table of all integer solutions of this equation for all positive $ D \leqslant 50000$ is presented. Some theoretic results which describe certain values of D for which the equation has no nontrivial solution are also given.

References [Enhancements On Off] (What's this?)

  • [1] P. BACHMANN, Die Lehre von der Kreisteilung, 2nd ed., Teubner, Leipzig, 1921.
  • [2] B. D. Beach, H. C. Williams, and C. R. Zarnke, Some computer results on units in quadratic and cubic fields, Proceedings of the Twenty-Fifth Summer Meeting of the Canadian Mathematical Congress (Lakehead Univ., Thunder Bay, Ont., 1971) Lakehead Univ., Thunder Bay, Ont., 1971, pp. 609–648. MR 0337887 (49 #2656)
  • [3] J. H. E. Cohn, The diophantine equation 𝑥³=𝑑𝑦³+1, J. London Math. Soc. 42 (1967), 750–752. MR 0217011 (36 #106)
  • [4] B. N. Delone and D. K. Faddeev, The theory of irrationalities of the third degree, Translations of Mathematical Monographs, Vol. 10, American Mathematical Society, Providence, R.I., 1964. MR 0160744 (28 #3955)
  • [5] Wilhelm Ljunggren, Einige Bemerkungen über die Darstellung ganzer Zahlen durch binäre kubische Formen mit positiver Diskriminante, Acta Math. 75 (1943), 1–21 (German). MR 0017303 (8,135k)
  • [6] T. NAGELL, "Solution complète de quelques équations cubiques à deux indéterminees," J. Math. Pures Appl., (9), v. 4, 1925, pp. 209-270.
  • [7] T. NAGELL, "Einige Gleichungen der Form $ a{y^2} + by + c = d{x^3}$," Skr. Norske Vid.-Akad. Oslo, 1930, No. 7.
  • [8] Ernst S. Selmer, The Diophantine equation 𝑎𝑥³+𝑏𝑦³+𝑐𝑧³=0, Acta Math. 85 (1951), 203–362 (1 plate). MR 0041871 (13,13i)
  • [9] H. C. Williams and C. R. Zarnke, Computation of the solutions of the Diophantine equation 𝑥³+𝑑𝑦³=1, Proceedings of the Manitoba Conference on Numerical Mathematics (Univ. Manitoba, Winnipeg, Man., 1971) Dept. Comput. Sci., Univ. Manitoba, Winnipeg, Man., 1971, pp. 671–676. MR 0332630 (48 #10956)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10B10

Retrieve articles in all journals with MSC: 10B10


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1977-0434946-0
PII: S 0025-5718(1977)0434946-0
Article copyright: © Copyright 1977 American Mathematical Society