Computation of the Solution of $x^3 + Dy^3 = 1$

By H. C. Williams and R. Holte

Abstract. A computer technique for finding integer solutions of
$x^3 + Dy^3 = 1$

is described, and a table of all integer solutions of this equation for all positive $D < 50000$ is presented. Some theoretic results which describe certain values of D for which the equation has no nontrivial solution are also given.

1. Introduction. Let D be an integer which is not a perfect cube; let $K = \mathbb{Q}(\sqrt[3]{D})$, the field formed by adjoining $\sqrt[3]{D}$ to the rationals \mathbb{Q}; and let $\epsilon > 1$ be the fundamental unit of K. By a nontrivial solution of

\[x^3 + Dy^3 = 1, \]

we mean a pair of integers (e, f) such that e and f satisfy (1) and $ef \neq 0$. We say that (1) is solved when we have either found all its nontrivial solutions or we have shown that no nontrivial solutions of (1) exist. If (1) has a nontrivial solution, we say that D is admissible; otherwise, we say that D is inadmissible.

It has long been known that the solution of (1) can be obtained from the following theorem.

Theorem (Deleone-Nagell [6], [7]). The equation (1) has at most one nontrivial solution. If (e, f) is such a solution, then $e + f\sqrt[3]{D}$ is either e or e^2, the latter case occurring only for $D = 19, 20, 28$.

By using this theorem, Williams and Zarnke [9] determined all nontrivial solutions of (1) for all D such that $1 < D < 15000$. The difficulty in using this theorem to solve (1) lies in the fact that the calculation of ϵ is frequently very difficult and time consuming. The best algorithm for computing ϵ, which is currently available, still seems to be that of Voronoi (see, for example, [4] and [2]); however, this algorithm is both intricate and lengthy. For example, when $D = 34607$, the number of iterations required to find ϵ is 66931 and $\epsilon > 10^{32873}$.

There appear to be relatively few values of D which are admissible and, when a value of D is admissible, the corresponding ϵ is usually quite small. Consequently, the best strategy for solving (1) would seem to consist of finding simpler techniques than the calculation of ϵ for determining when D is inadmissible. The purpose of this paper is to develop some of these techniques. We also present an extended version of the table in [9] for all $D < 50000$. Finally, some theorems are given which can be used for showing that certain values of D are inadmissible.

Received September 16, 1976.

Copyright © 1977, American Mathematical Society

778
2. Some Criteria for Determining When D is Inadmissible. Since \(x^3 + Dxy^3 = x^3 + d_1d_2^3y^3 \), we need only consider those values of \(D \) which have no perfect cube divisor; hence, we assume that \(D = cd^2 \), where \(c, d \) are square-free integers. We also let \(D = 3^iAB \), where \(0 \leq i \leq 2 \), every prime divisor of \(A \) is congruent to \(-1\) modulo 3, and every prime divisor of \(B \) is congruent to \(+1\) modulo 3. Cohn [3] has shown that, if \(D \neq 2, 9, 17, 20 \), then \(D \) is inadmissible whenever \(B = 1 \). In what follows we will assume that \(D \neq 2, 9, 17, 20 \). The following simple result is also frequently useful.

Theorem. If \(D \equiv \pm 4, \pm 3 \pmod{9} \) and \(B > 1 \), then \(D \) is inadmissible if no factor \((\neq 1)\) of \(B \) is of the form \(1 + 9t \).

Proof. Suppose \(D \) is admissible and suppose \((e, f)\) is the nontrivial solution of (1). Since \(e^3 + Df^3 = 1 \) and \(e^3 \equiv 0, 1, -1, f^3 \equiv 0, 1, -1 \pmod{9} \), we must have \(3 \mid f \). Since \(e^2 + e + 1 \equiv 0 \pmod{9} \) and \((A, e^2 + e + 1) = 1 \), we get \(e \equiv 1 \pmod{9} \),

\[
e^2 + e + 1 = 3B'^2g^3,
\]

where \(B' > 1 \) and \(B' \mid B \). It follows that \(B' \equiv 1 \pmod{9} \).

Let \(\rho \) be a primitive cube root of unity; let \(Q(\rho) \) be the field formed by adjoining \(\rho \) to the rationals; let \(Q[\rho] \) be the ring of integers in \(Q(\rho) \); and let \(Z \) be the set of rational integers. Put \(\lambda = 1 - \rho \) and, if \(p \equiv 1 \pmod{3} \) is any rational prime, define

\[
\pi_p = a + b\rho, \quad \pi_p = a + b\rho^2, \quad \text{where } a \equiv -1 \pmod{3}, 3 \mid b, \text{ and } p = N(\pi_p) = N(\pi_p) = a^2 - ab + b^2.
\]

If \(P = p_1p_2 \cdots p_j \), where \(p_i \equiv 1 \pmod{3} \) is prime for \(i = 1, 2, \ldots, j \), we define \(\Gamma(P) = \{ \gamma \mid \gamma = \pi_1\pi_2\pi_3 \cdots \pi_m \} \) where \(\pi_i = \pi_{p_i} \) or \(\pi_{p_i}^* \); and if \(p_k = p_h \), then \(\pi_k = \pi_h \). Thus, if there are \(l \) distinct prime factors of \(P \), we have \(2^l \) elements in \(\Gamma(P) \).

With these conventions we can now give the following four theorems.

Theorem 1. Let \(D = AB \not\equiv \pm 1 \pmod{9} \). If \(D \) is admissible, there must be a unitary* factor \(B_2 \) of \(B \) such that \(B_2 > 1 \) and either

\[
(2) \quad \rho^2\gamma r^3 + B_1Ar^3 = \lambda
\]

or

\[
(3) \quad \gamma r^3 + 3p^2\lambda B_1Ar^3 = 1 \quad (B_2 \equiv 1 \pmod{9})
\]

must have a solution where \(\tau \in Q[\rho], r \in Z, B_1 = B/B_2, \) and \(\gamma \in \Gamma(B_2) \).

Theorem 2. Let \(D = AB \equiv \pm 1 \pmod{9} \). If \(D \) is admissible, there must be a unitary factor \(B_2 \) of \(B \) such that \(B_2 > 1 \) and either

\[
(4) \quad \rho\gamma r^3 + B_1Ar^3 = \lambda
\]

or

\[
(5) \quad \gamma r^3 + 3p^2\lambda B_1Ar^3 = 1 \quad (B_2 \equiv 1 \pmod{9})
\]

must have a solution, where \(\tau \in Q[\rho], r \in Z, B_1 = B/B_2, \) and \(\gamma \in \Gamma(B_2) \).

Theorem 3. Let \(D = 3AB \), if \(D \) is admissible, there must be a unitary factor \(B_2 \) of \(B \) such that \(B_2 > 1 \) and

*We say that \(m \) is a unitary factor of \(n \) if \((m, m/n) = 1 \).
must have a solution, where \(\tau \in \mathbb{Q}[\rho], r \in \mathbb{Z}, B_1 = B/B_2, \) and \(\gamma \in \Gamma(B_2). \)

Theorem 4. Let \(D = 9AB. \) If \(D \) is admissible, there must be a unitary factor \(B_2 \) of \(B \) such that \(B_2 > 1, B_2 \not\equiv 4 \pmod{9} \), and

\[
(7) \quad \rho \gamma^3 + \rho^2 \lambda AB_1 t^3 = 1 \quad (B_2 \equiv 7 \pmod{9}),
\]

\[
(8) \quad \rho^2 \gamma^3 + \rho^2 \lambda AB_1 t^3 = 1 \quad (B_2 \equiv 1 \pmod{9})
\]

or

\[
(9) \quad \gamma^3 + \rho^2 \lambda AB_1 t^3 = 1 \quad (B_2 \equiv 1 \pmod{9}),
\]

must have a solution, where \(\tau \in \mathbb{Q}[\rho], r \in \mathbb{Z}, B_1 = B/B_2, \) and \(\gamma \in \Gamma(B_2). \)

Since the proofs of these four theorems are similar, we will prove Theorem 1 only.

Proof of Theorem 1. Suppose \(D \) is admissible and that \((e, f) \) is the nontrivial solution of (1). We divide the proof into two cases.

Case 1. \(3 \nmid f. \) Since \(D \not\equiv \pm 1 \pmod{9} \) and \(3 \nmid f, \) we must have \(e \equiv -1 \pmod{3} \) and

\[
e - 1 = B_1 A r^3, \quad e^2 + e + 1 = B_2 r^3,
\]

where \(r, t \in \mathbb{Z}, B_1 B_2 = B, (B_1, B_2) = 1. \) Since \(D \not\equiv 17, 20, \) we have \(B_2 > 1 \) (Ljunggren [5]).

In \(\mathbb{Q}(\rho), \)

\[
(e - \rho)(e - \rho^2) = B_2 r^3;
\]

and it follows that \(e - \rho = \beta r^3, \) where \(\beta = \rho^\gamma \) for some \(\gamma \in \Gamma(B_2) \) and \(\tau \in \mathbb{Q}[\rho]. \)

Since \(e \equiv -1, \gamma \equiv \pm 1, \) and \(\tau^3 \equiv \pm 1 \pmod{3}, \) we must have \(j = 2. \) Since

\[
e = B_1 A r^3 + 1 \quad \text{and} \quad e = \rho^2 \gamma t^3 + \rho,
\]

we get (2).

Case 2. \(3 \mid f. \) In this case we have \(e \equiv 1 \pmod{9} \) and

\[
e - 1 = 9B_1 A r^3, \quad e^2 + e + 1 = 3B_2 r^3.
\]

It follows that \(e - \rho = \rho^\lambda \gamma^3, \) where \(\tau \in \mathbb{Q}[\rho]. \) Since \(e \equiv 1 \pmod{9} \) and \(\gamma^3 \equiv \pm 1 \pmod{3}, \) we find that \(j = 0. \) It is now easy to deduce (3).

Let \(\pi \) be any prime of \(\mathbb{Q}[\rho]; \) and define the cubic character of \(\nu \in \mathbb{Q}[\rho] \) by

\[
[v|\pi] = 1, \rho \text{ or } \rho^2
\]

when

\[
j^{N(\pi)-1}/3 \equiv 1, \rho \text{ or } \rho^2 \pmod{\pi},
\]

respectively. Suppose, for example, that \(D = AB \not\equiv \pm 1 \pmod{9}. \) If \(D \) is admissible, we must have some unitary factor \(B_2 \) of \(B \) such that \(B_2 > 1; \) and we must also have some \(\gamma \in \Gamma(B_2) \) such that either (2) or (3) is solvable. If (2) is solvable,

\[
(10) \quad \left[\frac{\lambda^2 \rho \gamma}{q} \right] = 1 \quad \text{for each prime } q \text{ which divides } A,
\]
COMPUTATION OF THE SOLUTION OF $x^3 + Dy^3 = 1$

(11) $\left[\frac{\lambda^2 \rho \gamma}{\pi_p}\right] = \left[\frac{\lambda^2 \rho \gamma}{\pi_p}\right] = 1$ for each rational prime p which divides B_1.

(12) $\left[\frac{\lambda^2 B_1 A}{\pi_i}\right] = 1$ for $i = 1, 2, 3, \ldots, m$, where $\gamma = \pi_1 \pi_2 \cdots \pi_m$.

If (3) is solvable,

(13) $B_2 \equiv 1 \pmod{9}$,

(14) $\left[\frac{\gamma}{q}\right] = 1$ for each prime q which divides A,

(15) $\left[\frac{\gamma}{\pi_p}\right] = \left[\frac{\gamma}{\pi_p}\right] = 1$ for each rational prime p which divides B_1,

(16) $\left[\frac{3\rho^2 \lambda B_1 A}{\pi_i}\right] = 1$ for $i = 1, 2, 3, \ldots, m$, where $\gamma = \pi_1 \pi_2 \cdots \pi_m$.

If, for every possible unitary divisor $B_2 > 1$ of B there does not exist a value for γ such that either (10)--(12) or (13)--(16) are all true, then neither (2) nor (3) has a solution; thus, D is inadmissible.

Similar results can also be obtained from Theorems 2, 3 and 4.

3. **Computer Algorithms.** In order to make use of the results described above, we must have a method for evaluating $[\nu/\pi]$. To do this we use an algorithm analogous to that of Jacobi for evaluating the Legendre Symbol. To evaluate $[(A + B\rho)(C + D\rho)]$, where $A, B, C, D \in \mathbb{Z}$ and $3 \nmid C, 3 \mid D$, we first find $E + F\rho$, where $E = A - xC + yD$, $F = B - yC -xD + yD$,

<table>
<thead>
<tr>
<th>Table 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>7</td>
</tr>
<tr>
<td>9</td>
</tr>
<tr>
<td>17</td>
</tr>
<tr>
<td>19</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>26</td>
</tr>
<tr>
<td>28</td>
</tr>
<tr>
<td>37</td>
</tr>
<tr>
<td>43</td>
</tr>
<tr>
<td>63</td>
</tr>
<tr>
<td>65</td>
</tr>
<tr>
<td>91</td>
</tr>
<tr>
<td>124</td>
</tr>
<tr>
<td>126</td>
</tr>
<tr>
<td>182</td>
</tr>
<tr>
<td>215</td>
</tr>
<tr>
<td>217</td>
</tr>
<tr>
<td>254</td>
</tr>
<tr>
<td>342</td>
</tr>
<tr>
<td>344</td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>D</th>
<th>e</th>
<th>f</th>
<th>D</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2196</td>
<td>13</td>
<td>-1</td>
<td>17145</td>
<td>361</td>
<td>-14</td>
</tr>
<tr>
<td>2198</td>
<td>-13</td>
<td>1</td>
<td>17575</td>
<td>26</td>
<td>-1</td>
</tr>
<tr>
<td>2743</td>
<td>14</td>
<td>-1</td>
<td>17577</td>
<td>-26</td>
<td>1</td>
</tr>
<tr>
<td>2745</td>
<td>-14</td>
<td>1</td>
<td>18745</td>
<td>1036</td>
<td>-39</td>
</tr>
<tr>
<td>3155</td>
<td>-44</td>
<td>3</td>
<td>18963</td>
<td>-80</td>
<td>3</td>
</tr>
<tr>
<td>3374</td>
<td>15</td>
<td>-1</td>
<td>19441</td>
<td>-242</td>
<td>9</td>
</tr>
<tr>
<td>3376</td>
<td>-15</td>
<td>1</td>
<td>19682</td>
<td>27</td>
<td>-1</td>
</tr>
<tr>
<td>3605</td>
<td>46</td>
<td>-3</td>
<td>19684</td>
<td>-27</td>
<td>1</td>
</tr>
<tr>
<td>3724</td>
<td>-31</td>
<td>2</td>
<td>19927</td>
<td>244</td>
<td>-9</td>
</tr>
<tr>
<td>3907</td>
<td>-63</td>
<td>4</td>
<td>20421</td>
<td>82</td>
<td>-3</td>
</tr>
<tr>
<td>4095</td>
<td>16</td>
<td>-1</td>
<td>20797</td>
<td>-55</td>
<td>2</td>
</tr>
<tr>
<td>4097</td>
<td>-16</td>
<td>1</td>
<td>21951</td>
<td>28</td>
<td>-1</td>
</tr>
<tr>
<td>4291</td>
<td>65</td>
<td>-4</td>
<td>21953</td>
<td>-28</td>
<td>1</td>
</tr>
<tr>
<td>4492</td>
<td>33</td>
<td>-2</td>
<td>23149</td>
<td>57</td>
<td>-2</td>
</tr>
<tr>
<td>4912</td>
<td>17</td>
<td>-1</td>
<td>24388</td>
<td>29</td>
<td>-1</td>
</tr>
<tr>
<td>4914</td>
<td>-17</td>
<td>1</td>
<td>24390</td>
<td>-29</td>
<td>1</td>
</tr>
<tr>
<td>5080</td>
<td>361</td>
<td>-21</td>
<td>26110</td>
<td>-89</td>
<td>3</td>
</tr>
<tr>
<td>5514</td>
<td>-53</td>
<td>3</td>
<td>26999</td>
<td>30</td>
<td>-1</td>
</tr>
<tr>
<td>5831</td>
<td>18</td>
<td>-1</td>
<td>27001</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>5833</td>
<td>-18</td>
<td>1</td>
<td>27910</td>
<td>91</td>
<td>-3</td>
</tr>
<tr>
<td>6162</td>
<td>55</td>
<td>-3</td>
<td>29790</td>
<td>31</td>
<td>-1</td>
</tr>
<tr>
<td>6858</td>
<td>19</td>
<td>-1</td>
<td>29792</td>
<td>-31</td>
<td>1</td>
</tr>
<tr>
<td>6860</td>
<td>-19</td>
<td>1</td>
<td>31256</td>
<td>-63</td>
<td>2</td>
</tr>
<tr>
<td>7415</td>
<td>-39</td>
<td>2</td>
<td>32006</td>
<td>-127</td>
<td>4</td>
</tr>
<tr>
<td>7999</td>
<td>20</td>
<td>-1</td>
<td>32042</td>
<td>667</td>
<td>-21</td>
</tr>
<tr>
<td>8001</td>
<td>-20</td>
<td>1</td>
<td>32767</td>
<td>32</td>
<td>-1</td>
</tr>
<tr>
<td>8615</td>
<td>41</td>
<td>-2</td>
<td>32769</td>
<td>-32</td>
<td>1</td>
</tr>
<tr>
<td>8827</td>
<td>-62</td>
<td>3</td>
<td>33542</td>
<td>129</td>
<td>-4</td>
</tr>
<tr>
<td>9260</td>
<td>21</td>
<td>-1</td>
<td>34328</td>
<td>65</td>
<td>-2</td>
</tr>
<tr>
<td>9262</td>
<td>-21</td>
<td>1</td>
<td>34859</td>
<td>-98</td>
<td>3</td>
</tr>
<tr>
<td>9709</td>
<td>64</td>
<td>-3</td>
<td>35936</td>
<td>33</td>
<td>-1</td>
</tr>
<tr>
<td>10647</td>
<td>22</td>
<td>-1</td>
<td>35938</td>
<td>-33</td>
<td>1</td>
</tr>
<tr>
<td>10649</td>
<td>-22</td>
<td>1</td>
<td>37037</td>
<td>100</td>
<td>-3</td>
</tr>
<tr>
<td>12166</td>
<td>23</td>
<td>-1</td>
<td>39303</td>
<td>34</td>
<td>-1</td>
</tr>
<tr>
<td>12168</td>
<td>-23</td>
<td>1</td>
<td>39305</td>
<td>-34</td>
<td>1</td>
</tr>
<tr>
<td>12978</td>
<td>-47</td>
<td>2</td>
<td>42874</td>
<td>35</td>
<td>-1</td>
</tr>
<tr>
<td>13256</td>
<td>-71</td>
<td>3</td>
<td>42876</td>
<td>-35</td>
<td>1</td>
</tr>
<tr>
<td>13538</td>
<td>-143</td>
<td>6</td>
<td>44739</td>
<td>-71</td>
<td>2</td>
</tr>
<tr>
<td>13823</td>
<td>24</td>
<td>-1</td>
<td>45372</td>
<td>-107</td>
<td>3</td>
</tr>
<tr>
<td>13825</td>
<td>-24</td>
<td>1</td>
<td>46011</td>
<td>-215</td>
<td>6</td>
</tr>
<tr>
<td>14114</td>
<td>145</td>
<td>-6</td>
<td>46655</td>
<td>36</td>
<td>-1</td>
</tr>
<tr>
<td>14408</td>
<td>73</td>
<td>-3</td>
<td>46657</td>
<td>-36</td>
<td>1</td>
</tr>
<tr>
<td>14706</td>
<td>49</td>
<td>-2</td>
<td>47307</td>
<td>217</td>
<td>-6</td>
</tr>
<tr>
<td>15253</td>
<td>-124</td>
<td>5</td>
<td>47964</td>
<td>109</td>
<td>-3</td>
</tr>
<tr>
<td>15624</td>
<td>25</td>
<td>-1</td>
<td>48627</td>
<td>73</td>
<td>-2</td>
</tr>
<tr>
<td>15626</td>
<td>-25</td>
<td>1</td>
<td>48949</td>
<td>4097</td>
<td>-112</td>
</tr>
<tr>
<td>16003</td>
<td>126</td>
<td>-5</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[x = Ne \left(\frac{AC + BD - AD}{C^2 - CD + D^2} \right), \quad y = Ne \left(\frac{BC - AD}{C^2 - CD + D^2} \right), \]

and, by \(Ne(\alpha) \) (\(\alpha \) real), we denote the nearest rational integer to \(\alpha \).

If \(E \equiv -F \) (mod 3), divide \(E + F\rho \) by \(1 - \rho \) \(m \) times until

\[\frac{E + F\rho}{(1 - \rho)^m} = \bar{E} + \bar{F}\rho, \]
where \(E \neq -F \pmod{3} \). This can be easily done by using the result that, if \(E = -F + 3Q \), then \((E + Fp)/(1 - \rho) = 2Q - F + Q\rho\).

If \(3 \mid F \), put \(n = 0, G = E, H = F \);
if \(3 \mid E \), put \(n = 1, G = F - E, H = -E \); and
if \(3 \nmid E, F \), put \(n = 2, G = -F, H = E - F \).

We have
\[
\begin{bmatrix} A + Bp \\ C + Dp \end{bmatrix} = \rho^{(2m+n)(c^2-1)/3-nC/3\cdot D/3} \begin{bmatrix} C + Dp \\ G + Hp \end{bmatrix}.
\]

We now apply the algorithm again to \([(C + Dp)(G + Hp)]\). Since \(N(G + Hp) < N(C + Dp) \), we can repeat this process until we ultimately get a symbol of the form \([\pm 1](A + Bp) = 1\). The accumulated power of \(\rho \) will give us the value of \([(A + Bp)(C + Dp)]\). By using well-known results concerning the symbol \([\nu|\pi]\) (see, for example, Bachmann \([1]\)), it is a simple matter to verify that if \(C + Dp \) is a prime in \(\mathbb{Q}(\rho) \), then this algorithm gives the cubic character of \(A + Bp \) modulo \(C + Dp \).

A computer program was written, which used the results of Section 2 in conjunction with the above algorithm, in order to solve (1). For any given value of \(D = cd^2 \), the program first attempted to prove that \(D \) is inadmissible; if this failed, the program used the algorithm of Voronoi to determine the fundamental unit
\[
e = (u + v\sqrt{D} + w\sqrt{D^2})/t \quad (u, v, w, t \in \mathbb{Z})
\]
of \(K \), where \(u, v, w, t \) were calculated modulo a large prime \(R \) (see \([9]\)). If either \(v \) or \(w \) were zero modulo \(R \), the program recalculated \(u, v, w, t \) exactly. If, at this stage, the solution of either \(x^3 + cd^2y^3 = 1 \) or \(x^3 + c^2dy^3 = 1 \) was discovered, the computer printed the solution and the appropriate \(D \) value.

This program was run on all values of \(D \) of the form \(cd^2 \), where \(c, d \) are square-free, \(c > d \), and \(15000 < D < 50000 \). Over 89% of the \(D \) values considered are inadmissible by the criteria of Section 2 only. In Table 1 above we present all the non-trivial solutions of (1) for every \(D \) such that \(1 \leq D \leq 50000 \).

4. Some Theoretical Results. When \(B \) is a single prime or the square of a prime, we can obtain some results concerning the inadmissibility of \(D \) which are similar to results of Sylvester and Selmer (see Selmer \([8, \text{Chapter 9}]\)) concerning \(x^3 + y^3 = Dz^3 \). In what follows we denote by \(p \) a rational prime of the form \(3r + 1 \) and we denote by \((n|p)_3 \quad (n \in \mathbb{Z})\), the least positive residue of \(n^{(p-1)/3} \pmod{p} \). Note that \((n|p)_3 = 1\) if and only if \([n|\pi] = 1\), where \(\pi = \pi_p \) or \(\pi_p \).

Theorem 5. If \(D = p^\kappa A \quad (k = 1 \text{ or } 2), D \neq \pm 1 \pmod{9} \), then \(D \) is inadmissible if either
\[
(q | p)_3 \neq 1 \quad \text{for some prime divisor } q \text{ of } A
\]
or
\[
p \neq 1 \pmod{9} \quad \text{and} \quad (3 | p)_3 = 1.
\]

Theorem 6. If \(D = p^\kappa A \quad (k = 1 \text{ or } 2), D \equiv \pm 1 \pmod{9} \), then \(D \) is admissible if either
Theorem 7. If $D = 3p^\kappa A$ ($\kappa = 1$ or 2), then D is inadmissible if either

$$p \not\equiv 1 \pmod{9};$$

or

$$p \equiv 1 \pmod{9}, \ (3 \mid p)^3 \neq 1;$$

or

$$p \equiv 1 \pmod{9}, \ (3 \mid p)^3 = 1 \text{ and } (q \mid p)^3 \neq 1$$

for some prime $q \mid A$.

Theorem 8. If $D = 9p^\kappa A$ ($\kappa = 1$ or 2), then D is inadmissible if

$$p^\kappa \equiv 4 \pmod{9};$$

or

$$p^\kappa \equiv 7 \pmod{9}, \ A \equiv \pm 4 \pmod{9}, \ (3 \mid p)^3 \neq 1;$$

or

$$p^\kappa \equiv 7 \pmod{9}, \ A \not\equiv \pm 4 \pmod{9}, \ (3q \mid p)^3 \neq 1$$

for some prime of $q \mid A$, where $j = -(q + 1)(4A^2 - 1)/9 \pmod{3}$.

Since the proofs of these theorems are similar, we give here the proof of Theorem 6 only.

Proof of Theorem 6. From Theorem 2 we see that if (1) has a nontrivial solution, we must have either

(a) $[\lambda^2 A \mid \pi] = 1$ and $[\rho^2 \lambda^2 \pi^\kappa \mid q] = 1$ for each prime $q \mid A$ or $p \equiv 1 \pmod{9}$ and

(b) $[3\rho^2 \lambda A \mid \pi] = 1$ and $[\pi \mid q] = 1$ for each prime $q \mid A$, where $\pi = \pi_p$ or $\pi_{\bar{p}}$.

If (a) is true, we see that

$$[\rho \lambda^2 \pi^\kappa \mid q] = [\rho^2 \pi^\kappa \mid q] = 1;$$

consequently,

$$[\rho \pi^\kappa \mid q] = \rho^\kappa(q^2 - 1)/3$$

for each prime $q \mid A$, and it follows that $[A \mid \pi] = \rho^\kappa(A^2 - 1)/3$. Since $p^\kappa A \equiv \pm 1 \pmod{9}$, we have $(A^2 - 1)/3 = \kappa(p - 1)/3 \pmod{3}$ and $[A \mid \pi] = \rho^\kappa(p - 1)/3$. From the fact that $[\lambda^2 A \mid \pi] = 1$, we get $[3 \mid \pi] = \rho^{(p - 1)/3}$; hence $[3q \mid \pi] = \rho^\kappa(q + 1)/3 + (p - 1)/3$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use
COMPUTATION OF THE SOLUTION OF $x^3 + Dy^3 = 1$

If $p \not\equiv 1 \pmod{9}$, then D is inadmissible if $(3 \mid p)_3 = 1$ or if $(3 \mid q \mid p)_3 \neq 1$ for some prime $q \mid A$ when $j \equiv -\kappa(p - 1)(q + 1)/9 \pmod{3}$.

If (β) is true, we must have $(p \mid q)_3 = 1$ for each prime $q \mid A$. Thus, if $p \equiv 1 \pmod{9}$, $(3 \mid p)_3 \neq 1$ and $(p \mid q)_3 \neq 1$ for some prime $q \mid A$, then neither (α) nor (β) is true.

With these results it is frequently possible to determine the inadmissibility of a value of D of the form $3^l p^a A$ by using a table of indices only. For example, if $D = 95545 = 5 \cdot 97 \cdot 197$, we have $p = 97$ and $p \not\equiv 1 \pmod{9}$. Also $(3 \mid p)_3 \neq 1$, $e = 0$, and $(197 \mid 97)_3 \neq 1$; hence, 95545 is inadmissible.

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada