Computation of the Solution of $x^3 + Dy^3 = 1$

By H. C. Williams and R. Holte

Abstract. A computer technique for finding integer solutions of

$$x^3 + Dy^3 = 1$$

is described, and a table of all integer solutions of this equation for all positive $D \leq 50000$ is presented. Some theoretic results which describe certain values of D for which the equation has no nontrivial solution are also given.

1. Introduction. Let D be an integer which is not a perfect cube; let $K = \mathbb{Q}(\sqrt[3]{D})$, the field formed by adjoining $\sqrt[3]{D}$ to the rationals \mathbb{Q}; and let $\epsilon > 1$ be the fundamental unit of K. By a nontrivial solution of

(1) $$x^3 + Dy^3 = 1,$$

we mean a pair of integers (e, f) such that e and f satisfy (1) and $ef \neq 0$. We say that (1) is solved when we have either found all its nontrivial solutions or we have shown that no nontrivial solutions of (1) exist. If (1) has a nontrivial solution, we say that D is admissible; otherwise, we say that D is inadmissible.

It has long been known that the solution of (1) can be obtained from the following theorem.

Theorem (Delone-Nagell [6], [7]). The equation (1) has at most one nontrivial solution. If (e, f) is such a solution, then $e + \sqrt[3]{D}f$ is either e or e^2, the latter case occurring only for $D = 19, 20, 28$.

By using this theorem, Williams and Zarnke [9] determined all nontrivial solutions of (1) for all D such that $1 < D < 15000$. The difficulty in using this theorem to solve (1) lies in the fact that the calculation of ϵ is frequently very difficult and time consuming. The best algorithm for computing ϵ, which is currently available, still seems to be that of Voronoi (see, for example, [4] and [2]); however, this algorithm is both intricate and lengthy. For example, when $D = 34607$, the number of iterations required to find ϵ is 66931 and $\epsilon > 10^{32873}$.

There appear to be relatively few values of D which are admissible and, when a value of D is admissible, the corresponding ϵ is usually quite small. Consequently, the best strategy for solving (1) would seem to consist of finding simpler techniques than the calculation of ϵ for determining when D is inadmissible. The purpose of this paper is to develop some of these techniques. We also present an extended version of the table in [9] for all $D \leq 50000$. Finally, some theorems are given which can be used for showing that certain values of D are inadmissible.

Revised September 16, 1976.

2. Some Criteria for Determining When D is Inadmissible. Since $x^3 + d_1 d_2^3 y^3 = x^3 + d_1 (d_2 y)^3$, we need only consider those values of D which have no perfect cube divisor; hence, we assume that $D = cd^2$, where c, d are square-free integers. We also let $D = 3^i AB$, where $0 \leq i \leq 2$, every prime divisor of A is congruent to -1 modulo 3, and every prime divisor of B is congruent to $+1$ modulo 3. Cohn [3] has shown that, if $D \neq 2, 9, 17, 20$, then D is inadmissible whenever $B = 1$. In what follows we will assume that $D \neq 2, 9, 17, 20$. The following simple result is also frequently useful.

Theorem. If $D \equiv \pm 4, \pm 3 \pmod{9}$ and $B > 1$, then D is inadmissible if no factor $(\neq 1)$ of B is of the form $1 + 9t$.

Proof. Suppose D is admissible and suppose (e, f) is the nontrivial solution of (1). Since $e^3 + Df^3 = 1$ and $e^3 \equiv 0, 1, -1, f^3 \equiv 0, 1, -1 \pmod{9}$, we must have $3 | f$. Since $e^2 + e + 1 \equiv 0 \pmod{9}$ and $(A, e^2 + e + 1) = 1$, we get $e \equiv 1 \pmod{9}$, $e^2 + e + 1 = 3B' \lambda^3$, where $B' > 1$ and $B' \mid B$. It follows that $B' \equiv 1 \pmod{9}$.

Let ρ be a primitive cube root of unity; let $Q(\rho)$ be the field formed by adjoining ρ to the rationals; let $Q[\rho]$ be the ring of integers in $Q(\rho)$; and let Z be the set of rational integers. Put $\lambda = 1 - \rho$ and, if $p \equiv 1 \pmod{3}$ is any rational prime, define $\pi_p = a + b\rho$, $\pi_p = a + b\rho^2$, where $a \equiv -1 \pmod{3}$, $3 | b$, and $p = N(\pi_p) = N(\pi_p) = a^2 - ab + b^2$. If $P = p_1 p_2 \cdots p_i$, where $p_i \equiv 1 \pmod{3})$ is prime for $i = 1, 2, \ldots$, j, we define $\Gamma(P) = \{\gamma | \gamma = \pi_1 \pi_2 \cdots \pi_m \}$ where $\pi_i = \pi_{p_i}$ or π_{p_i}; and if $p_k = p$, then $\pi_k = \pi_n$. Thus, if there are l distinct prime factors of P, we have 2^l elements in $\Gamma(P)$.

With these conventions we can now give the following four theorems.

Theorem 1. Let $D = AB \equiv \pm 1 \pmod{9}$. If D is admissible, there must be a unitary* factor B_2 of B such that $B_2 > 1$ and either

\[\rho^2 \gamma r^3 + B_1 Ar^3 = \lambda \]

or

\[\gamma r^3 + 3\rho^2 \lambda B_1 Ar^3 = 1 \quad (B_2 \equiv 1 \pmod{9}) \]

must have a solution where $r \in Q[\rho]$, $r \in Z$, $B_1 = B/B_2$, and $\gamma \in \Gamma(B_2)$.

Theorem 2. Let $D = AB \equiv \pm 1 \pmod{9}$. If D is admissible, there must be a unitary factor B_2 of B such that $B_2 > 1$ and either

\[\rho \gamma r^3 + B_1 Ar^3 = \lambda \]

or

\[\gamma r^3 + 3\rho^2 \lambda B_1 Ar^3 = 1 \quad (B_2 \equiv 1 \pmod{9}) \]

must have a solution, where $r \in Q[\rho]$, $r \in Z$, $B_1 = B/B_2$, and $\gamma \in \Gamma(B_2)$.

Theorem 3. Let $D = 3AB$. If D is admissible, there must be a unitary factor B_2 of B such that $B_2 > 1$ and

*We say that m is a unitary factor of n if $(m, n/m) = 1$.

must have a solution, where \(\tau \in \mathbb{Q}[\rho] \), \(r \in \mathbb{Z} \), \(B_1 = B/B_2 \), and \(\gamma \in \Gamma(B_2) \).

Theorem 4. Let \(D = 9AB \). If \(D \) is admissible, there must be a unitary factor \(B_2 \) of \(B \) such that \(B_2 > 1 \), \(B_2 \not\equiv 4 \pmod{9} \), and

\[
(7) \quad \rho \tau^3 + \rho^2 \lambda B_1 r^3 = 1 \quad (B_2 \equiv 7 \pmod{9}),
\]

or

\[
(8) \quad \rho^2 \tau^3 + \rho^2 \lambda B_1 r^3 = 1 \quad (B_2 \equiv 1 \pmod{9})
\]

must have a solution, where \(\tau \in \mathbb{Q}[\rho] \), \(r \in \mathbb{Z} \), \(B_1 = B/B_2 \), and \(\gamma \in \Gamma(B_2) \).

The proofs of these four theorems are similar, so we will prove Theorem 1 only.

Proof of Theorem 1. Suppose \(D \) is admissible and that \((e, f)\) is the nontrivial solution of (1). We divide the proof into two cases.

Case 1. \(3 \nmid f \). Since \(D \not\equiv \pm 1 \pmod{9} \) and \(3 \nmid f \), we must have \(e \equiv -1 \pmod{3} \) and

\[
e - 1 = B_1 Ar^3, \quad e^2 + e + 1 = B_2 t^3,
\]

where \(r, t \in \mathbb{Z} \), \(B_1 B_2 = B \), \((B_1, B_2) = 1 \). Since \(D \not\equiv 17, 20 \pmod{9} \), we have \(B_2 > 1 \) (Ljunggren [5]).

In \(\mathbb{Q}(\rho) \),

\[
(e - \rho)(e - \rho^2) = B_2 t^3;
\]

and it follows that \(e - \rho = \beta r^3 \), where \(\beta = \rho^j \gamma \) for some \(\gamma \in \Gamma(B_2) \) and \(\tau \in \mathbb{Q}[\rho] \). Since \(e \equiv -1 \), \(\gamma \equiv \pm 1 \), and \(\tau^3 \equiv \pm 1 \pmod{3} \), we must have \(j = 2 \). Since

\[
e = B_1 Ar^3 + 1 \quad \text{and} \quad e = \rho^2 \gamma \tau^3 + \rho,
\]

we get (2).

Case 2. \(3 \mid f \). In this case we have \(e \equiv 1 \pmod{9} \) and

\[
e - 1 = 9B_1 Ar^3, \quad e^2 + e + 1 = 3B_2 t^3.
\]

It follows that \(e - \rho = \rho^{j+1} \lambda \gamma \tau^3 \), where \(\tau \in \mathbb{Q}[\rho] \). Since \(e \equiv 1 \pmod{9} \) and \(\gamma \tau^3 \equiv \pm 1 \pmod{3} \), we find that \(j = 0 \). It is now easy to deduce (3).

Let \(\pi \) be any prime of \(\mathbb{Q}[\rho] \); and define the cubic character of \(\nu \in \mathbb{Q}[\rho] \) by

\[
[v|\pi] = 1, \rho \text{ or } \rho^2
\]

when

\[
\lfloor N(\pi) - 1 \rfloor / 3 \equiv 1, \rho \text{ or } \rho^2 \pmod{\pi},
\]

respectively. Suppose, for example, that \(D = AB \not\equiv \pm 1 \pmod{9} \). If \(D \) is admissible, we must have some unitary factor \(B_2 \) of \(B \) such that \(B_2 > 1 \); and we must also have some \(\gamma \in \Gamma(B_2) \) such that either (2) or (3) is solvable. If (2) is solvable,

\[
(10) \quad \left[\frac{\lambda^2 \rho \gamma}{q} \right] = 1 \quad \text{for each prime } q \text{ which divides } A,
\]
COMPUTATION OF THE SOLUTION OF $x^3 + Dy^3 = 1$

(11) $\left[\frac{\lambda B}{\pi_p} \right] = \left[\frac{\lambda B}{\pi_p} \right] = 1$ for each rational prime p which divides B_1.

(12) $\left[\frac{\lambda B_1 A}{\pi_i} \right] = 1$ for $i = 1, 2, 3, \ldots, m$, where $\gamma = \pi_1 \pi_2 \cdots \pi_m$.

If (3) is solvable,

(13) $B_2 \equiv 1 \pmod{9}$,

(14) $\left[\frac{\gamma}{q} \right] = 1$ for each prime q which divides A,

(15) $\left[\frac{\gamma}{\pi_p} \right] = \left[\frac{\gamma}{\pi_p} \right] = 1$ for each rational prime p which divides B_1,

(16) $\left[\frac{3p^2 \lambda B_1 A}{\pi_i} \right] = 1$ for $i = 1, 2, 3, \ldots, m$, where $\gamma = \pi_1 \pi_2 \cdots \pi_m$.

If, for every possible unitary divisor $B_2 > 1$ of B there does not exist a value for γ such that either (10)–(12) or (13)–(16) are all true, then neither (2) nor (3) has a solution; thus, D is inadmissible.

Similar results can also be obtained from Theorems 2, 3 and 4.

3. Computer Algorithms. In order to make use of the results described above, we must have a method for evaluating $[\sqrt[n]{\pi}]$. To do this we use an algorithm analogous to that of Jacobi for evaluating the Legendre Symbol. To evaluate $[(A + Br)(C + Dr)]$, where $A, B, C, D \in \mathbb{Z}$ and $3 \nmid C, 3 \mid D$, we first find $E + Fr$, where $E = A - xC + yD$, $F = B - yC - xD + yD$.

Table 1

<table>
<thead>
<tr>
<th>D</th>
<th>e</th>
<th>f</th>
<th>D</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>-1</td>
<td>1</td>
<td>422</td>
<td>-15</td>
<td>2</td>
</tr>
<tr>
<td>7</td>
<td>2</td>
<td>-1</td>
<td>511</td>
<td>8</td>
<td>-1</td>
</tr>
<tr>
<td>9</td>
<td>-2</td>
<td>1</td>
<td>513</td>
<td>-8</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>18</td>
<td>-7</td>
<td>614</td>
<td>17</td>
<td>-2</td>
</tr>
<tr>
<td>19</td>
<td>-8</td>
<td>3</td>
<td>635</td>
<td>361</td>
<td>-42</td>
</tr>
<tr>
<td>20</td>
<td>-19</td>
<td>7</td>
<td>651</td>
<td>-26</td>
<td>3</td>
</tr>
<tr>
<td>26</td>
<td>3</td>
<td>-1</td>
<td>728</td>
<td>9</td>
<td>-1</td>
</tr>
<tr>
<td>28</td>
<td>-3</td>
<td>1</td>
<td>730</td>
<td>-9</td>
<td>1</td>
</tr>
<tr>
<td>37</td>
<td>10</td>
<td>-3</td>
<td>813</td>
<td>28</td>
<td>-3</td>
</tr>
<tr>
<td>43</td>
<td>-7</td>
<td>2</td>
<td>999</td>
<td>10</td>
<td>-1</td>
</tr>
<tr>
<td>63</td>
<td>4</td>
<td>-1</td>
<td>1001</td>
<td>-10</td>
<td>1</td>
</tr>
<tr>
<td>65</td>
<td>-4</td>
<td>1</td>
<td>1330</td>
<td>11</td>
<td>-1</td>
</tr>
<tr>
<td>91</td>
<td>9</td>
<td>-2</td>
<td>1332</td>
<td>-11</td>
<td>1</td>
</tr>
<tr>
<td>124</td>
<td>5</td>
<td>-1</td>
<td>1521</td>
<td>-23</td>
<td>2</td>
</tr>
<tr>
<td>126</td>
<td>-5</td>
<td>1</td>
<td>1588</td>
<td>-35</td>
<td>3</td>
</tr>
<tr>
<td>182</td>
<td>-17</td>
<td>3</td>
<td>1657</td>
<td>-71</td>
<td>6</td>
</tr>
<tr>
<td>215</td>
<td>6</td>
<td>-1</td>
<td>1727</td>
<td>12</td>
<td>-1</td>
</tr>
<tr>
<td>217</td>
<td>-6</td>
<td>1</td>
<td>1729</td>
<td>-12</td>
<td>1</td>
</tr>
<tr>
<td>254</td>
<td>19</td>
<td>-3</td>
<td>1801</td>
<td>73</td>
<td>-6</td>
</tr>
<tr>
<td>342</td>
<td>7</td>
<td>-1</td>
<td>1876</td>
<td>37</td>
<td>-3</td>
</tr>
<tr>
<td>344</td>
<td>-7</td>
<td>1</td>
<td>1953</td>
<td>25</td>
<td>-2</td>
</tr>
</tbody>
</table>
Table 1 (Continued)

<table>
<thead>
<tr>
<th>D</th>
<th>e</th>
<th>f</th>
<th>D</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>2196</td>
<td>13</td>
<td>-1</td>
<td>17145</td>
<td>361</td>
<td>-14</td>
</tr>
<tr>
<td>2198</td>
<td>-13</td>
<td>1</td>
<td>17575</td>
<td>26</td>
<td>-1</td>
</tr>
<tr>
<td>2743</td>
<td>14</td>
<td>-1</td>
<td>17577</td>
<td>-26</td>
<td>1</td>
</tr>
<tr>
<td>2745</td>
<td>-14</td>
<td>1</td>
<td>18745</td>
<td>1036</td>
<td>-39</td>
</tr>
<tr>
<td>3155</td>
<td>-44</td>
<td>3</td>
<td>18963</td>
<td>-80</td>
<td>3</td>
</tr>
<tr>
<td>3374</td>
<td>15</td>
<td>-1</td>
<td>19441</td>
<td>-242</td>
<td>9</td>
</tr>
<tr>
<td>3376</td>
<td>-15</td>
<td>1</td>
<td>19682</td>
<td>27</td>
<td>-1</td>
</tr>
<tr>
<td>3605</td>
<td>46</td>
<td>-3</td>
<td>19684</td>
<td>-27</td>
<td>1</td>
</tr>
<tr>
<td>3724</td>
<td>-31</td>
<td>2</td>
<td>19927</td>
<td>244</td>
<td>-9</td>
</tr>
<tr>
<td>3907</td>
<td>-63</td>
<td>4</td>
<td>20421</td>
<td>82</td>
<td>-3</td>
</tr>
<tr>
<td>4095</td>
<td>16</td>
<td>-1</td>
<td>20797</td>
<td>-55</td>
<td>2</td>
</tr>
<tr>
<td>4097</td>
<td>-16</td>
<td>1</td>
<td>21951</td>
<td>28</td>
<td>-1</td>
</tr>
<tr>
<td>4291</td>
<td>65</td>
<td>-4</td>
<td>21953</td>
<td>-28</td>
<td>1</td>
</tr>
<tr>
<td>4492</td>
<td>33</td>
<td>-2</td>
<td>23149</td>
<td>57</td>
<td>-2</td>
</tr>
<tr>
<td>4912</td>
<td>17</td>
<td>-1</td>
<td>24388</td>
<td>29</td>
<td>-1</td>
</tr>
<tr>
<td>4914</td>
<td>-17</td>
<td>1</td>
<td>24390</td>
<td>-29</td>
<td>1</td>
</tr>
<tr>
<td>5080</td>
<td>361</td>
<td>-21</td>
<td>26110</td>
<td>-89</td>
<td>3</td>
</tr>
<tr>
<td>5514</td>
<td>-54</td>
<td>3</td>
<td>26999</td>
<td>30</td>
<td>-1</td>
</tr>
<tr>
<td>5831</td>
<td>18</td>
<td>-1</td>
<td>27001</td>
<td>-30</td>
<td>1</td>
</tr>
<tr>
<td>5833</td>
<td>-18</td>
<td>1</td>
<td>27910</td>
<td>91</td>
<td>-3</td>
</tr>
<tr>
<td>6162</td>
<td>55</td>
<td>-3</td>
<td>29790</td>
<td>31</td>
<td>-1</td>
</tr>
<tr>
<td>6858</td>
<td>19</td>
<td>-1</td>
<td>29792</td>
<td>-31</td>
<td>1</td>
</tr>
<tr>
<td>6860</td>
<td>-19</td>
<td>1</td>
<td>31256</td>
<td>-63</td>
<td>2</td>
</tr>
<tr>
<td>7415</td>
<td>-39</td>
<td>2</td>
<td>32006</td>
<td>-127</td>
<td>4</td>
</tr>
<tr>
<td>7999</td>
<td>20</td>
<td>-1</td>
<td>32042</td>
<td>667</td>
<td>-21</td>
</tr>
<tr>
<td>8001</td>
<td>-20</td>
<td>1</td>
<td>32767</td>
<td>32</td>
<td>-1</td>
</tr>
<tr>
<td>8615</td>
<td>41</td>
<td>-2</td>
<td>32769</td>
<td>-32</td>
<td>1</td>
</tr>
<tr>
<td>8827</td>
<td>-62</td>
<td>3</td>
<td>33542</td>
<td>129</td>
<td>-4</td>
</tr>
<tr>
<td>9260</td>
<td>21</td>
<td>-1</td>
<td>34328</td>
<td>65</td>
<td>-2</td>
</tr>
<tr>
<td>9262</td>
<td>-21</td>
<td>1</td>
<td>34859</td>
<td>-98</td>
<td>3</td>
</tr>
<tr>
<td>9709</td>
<td>64</td>
<td>-3</td>
<td>35936</td>
<td>33</td>
<td>-1</td>
</tr>
<tr>
<td>10647</td>
<td>22</td>
<td>-1</td>
<td>35938</td>
<td>-33</td>
<td>1</td>
</tr>
<tr>
<td>10649</td>
<td>-22</td>
<td>1</td>
<td>37037</td>
<td>100</td>
<td>-3</td>
</tr>
<tr>
<td>12166</td>
<td>23</td>
<td>-1</td>
<td>39303</td>
<td>34</td>
<td>-1</td>
</tr>
<tr>
<td>12168</td>
<td>-23</td>
<td>1</td>
<td>39305</td>
<td>-34</td>
<td>1</td>
</tr>
<tr>
<td>12978</td>
<td>-47</td>
<td>2</td>
<td>42874</td>
<td>35</td>
<td>-1</td>
</tr>
<tr>
<td>13256</td>
<td>-71</td>
<td>3</td>
<td>42876</td>
<td>-35</td>
<td>1</td>
</tr>
<tr>
<td>13538</td>
<td>-143</td>
<td>6</td>
<td>44739</td>
<td>-71</td>
<td>2</td>
</tr>
<tr>
<td>13823</td>
<td>24</td>
<td>-1</td>
<td>45372</td>
<td>-107</td>
<td>3</td>
</tr>
<tr>
<td>13825</td>
<td>-24</td>
<td>1</td>
<td>46011</td>
<td>-215</td>
<td>6</td>
</tr>
<tr>
<td>14114</td>
<td>145</td>
<td>-6</td>
<td>46655</td>
<td>36</td>
<td>-1</td>
</tr>
<tr>
<td>14408</td>
<td>73</td>
<td>-3</td>
<td>46657</td>
<td>-36</td>
<td>1</td>
</tr>
<tr>
<td>14706</td>
<td>49</td>
<td>-2</td>
<td>47307</td>
<td>217</td>
<td>-6</td>
</tr>
<tr>
<td>15253</td>
<td>-124</td>
<td>5</td>
<td>47964</td>
<td>109</td>
<td>-3</td>
</tr>
<tr>
<td>15624</td>
<td>25</td>
<td>-1</td>
<td>48627</td>
<td>73</td>
<td>-2</td>
</tr>
<tr>
<td>15626</td>
<td>-25</td>
<td>1</td>
<td>48949</td>
<td>4097</td>
<td>-112</td>
</tr>
</tbody>
</table>

\[
x = \text{Ne}\left(\frac{AC + BD - AD}{C^2 - CD + D^2}\right), \quad y = \text{Ne}\left(\frac{BC - AD}{C^2 - CD + D^2}\right),
\]

and, by \(\text{Ne}(\alpha)(\alpha \text{ real})\), we denote the nearest rational integer to \(\alpha\).

If \(E \equiv -F \mod 3\), divide \(E + F\rho\) by \((1 - \rho)^m\) times until

\[
\frac{E + F\rho}{(1 - \rho)^m} = \bar{E} + \bar{F}\rho,
\]

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
COMPUTATION OF THE SOLUTION OF \(x^3 + Dy^3 = 1 \)

where \(E \neq -F \pmod{3} \). This can be easily done by using the result that, if \(E = -F + 3Q \), then \((E + F)p)(1 - p) = 2Q - F + Qp\).

If \(3 \mid E \), put \(n = 0, G = E, H = F \);
if \(3 \mid E \), put \(n = 1, G = E - F, H = -E \); and
if \(3 \mid 3F \), put \(n = 2, G = -F, H = E - F \).

We have

\[
\left[\frac{A + Bp}{C + Dp} \right] = p^{(2m+n)(C^2-1)/3-nCD/3} \left[\frac{C + Dp}{G + Hp} \right].
\]

We now apply the algorithm again to \([[(C + Dp)(G + Hp)] \). Since \(N(G + Hp) < N(C + Dp)\), we can repeat this process until we ultimately get a symbol of the form \([1|A + Bp]\). The accumulated power of \(p \) will give us the value of \([A + Bp](C + Dp)\]. By using well-known results concerning the symbol \([a|b]\) (see, for example, Bachmann [1]), it is a simple matter to verify that if \(C + Dp\) is a prime in \(Q(p)\), then this algorithm gives the cubic character of \(A + Bp\) modulo \(C + Dp\).

A computer program was written, which used the results of Section 2 in conjunction with the above algorithm, in order to solve (1). For any given value of \(D = cd^2\), the program first attempted to prove that \(D\) is inadmissible; if this failed, the program used the algorithm of Voronoi to determine the fundamental unit

\[e = (u + v\sqrt{D} + w\sqrt{D^2})/t \quad (u, v, w, t \in \mathbb{Z}) \]

of \(K\), where \(u, v, w, t\) were calculated modulo a large prime \(R\) (see [9]). If either \(v\) or \(w\) were zero modulo \(R\), the program recalculated \(u, v, w, t\) exactly. If, at this stage, the solution of either \(x^3 + cd^2y^3 = 1\) or \(x^3 + c^2dy^3 = 1\) was discovered, the computer printed the solution and the appropriate \(D\) value.

This program was run on all values of \(D\) of the form \(cd^2\), where \(c, d\) are square-free, \(c > d\), and \(15000 < D < 50000\). Over 89% of the \(D\) values considered are inadmissible by the criteria of Section 2 only. In Table 1 above we present all the non-trivial solutions of (1) for every \(D\) such that \(1 \leq D < 50000\).

4. Some Theoretical Results. When \(B\) is a single prime or the square of a prime, we can obtain some results concerning the inadmissibility of \(D\) which are similar to results of Sylvester and Selmer (see Selmer [8, Chapter 9]) concerning \(x^3 + y^3 = Dz^3\). In what follows we denote by \(p\) a rational prime of the form \(3r + 1\) and we denote by \((n|p)_3 \) \((n \in \mathbb{Z})\), the least positive residue of \(n^{(p-1)/3}\) \((mod p)\). Note that \((n|p)_3 = 1\) if and only if \([n|\pi] = 1\), where \(\pi = \pi_p\) or \(\pi_p\).

Theorem 5. If \(D = p^kA\) \((k = 1 \ or 2)\), \(D \neq \pm 1 \ (mod 9)\), then \(D\) is inadmissible if either

\[(q|p)_3 \neq 1 \quad \text{for some prime divisor} \ q \ \text{of} \ A \]

or

\[p \neq 1 \ (mod 9) \quad \text{and} \quad (3|p)_3 = 1. \]

Theorem 6. If \(D = p^kA\) \((k = 1 \ or 2)\), \(D \equiv \pm 1 \ (mod 9)\), then \(D\) is admissible if either
\[p \not\equiv 1 \pmod{9}, \ (3 \mid p)_3 = 1; \]

or
\[p \not\equiv 1 \pmod{9}, \ (3 \mid p)_3 \neq 1, \ (3q \mid p)_3 \neq 1 \]

for some prime divisor \(q \) of \(A \), where \(j = -\kappa(p - 1)(q + 1)/9 \pmod{3} \); or
\[p \equiv 1 \pmod{9}, \ (3 \mid p)_3 \neq 1, \ (q \mid p)_3 \neq 1 \]

for some prime \(q \mid A \).

Theorem 7. If \(D = 3p^\kappa A \) (\(\kappa = 1 \) or \(2 \)), then \(D \) is inadmissible if either

\[p \not\equiv 1 \pmod{9}; \]

or
\[p \equiv 1 \pmod{9}, \ (3 \mid p)_3 \neq 1; \]

or
\[p \equiv 1 \pmod{9}, \ (3 \mid p)_3 = 1 \quad \text{and} \quad (q \mid p)_3 \neq 1 \]

for some prime \(q \mid A \).

Theorem 8. If \(D = 9p^\kappa A \) (\(\kappa = 1 \) or \(2 \)), then \(D \) is inadmissible if

\[p^\kappa \equiv 4 \pmod{9}; \]

or
\[p^\kappa \equiv 7 \pmod{9}, \ A \equiv \pm 4 \pmod{9}, \ (3 \mid p)_3 \neq 1; \]

or
\[p^\kappa \equiv 7 \pmod{9}, \ A \not\equiv \pm 4 \pmod{9}, \ (3q \mid p)_3 \neq 1 \]

for some prime of \(q \mid A \), where \(j = -(q + 1)(4A^2 - 1)/9 \pmod{3} \).

Since the proofs of these theorems are similar, we give here the proof of Theorem 6 only.

Proof of Theorem 6. From Theorem 2 we see that if (1) has a nontrivial solution, we must have either

(\(\alpha \)) \([\lambda^2 A | \pi] = 1 \) and \([\rho^2 \lambda^2 \pi^\kappa | q] = 1 \) for each prime \(q \mid A \) or \(p \equiv 1 \pmod{9} \) and

(\(\beta \)) \([3\rho^2 \lambda A | \pi] = 1 \) and \([\pi | q] = 1 \) for each prime \(q \mid A \), where \(\pi = \pi_p \) or \(\overline{\pi_p} \).

If (\(\alpha \)) is true, we see that

\[
\begin{bmatrix}
\rho \lambda^2 \pi^\kappa / q \\
\end{bmatrix} = \begin{bmatrix}
\rho^2 \pi^\kappa / q \\
\end{bmatrix} = 1;
\]

consequently,

\[
\begin{bmatrix}
q / \pi \\
\end{bmatrix} = \rho^{\kappa(q^2 - 1)/3}
\]

for each prime \(q \mid A \), and it follows that \([A | \pi] = \rho^{\kappa(A^2 - 1)/3} \). Since \(p^\kappa A \equiv \pm 1 \pmod{9} \), we have \((A^2 - 1)/3 \equiv \kappa(p - 1)/3 \pmod{3} \) and \([A | \pi] = \rho^{(p - 1)/3} \). From the fact that \([\lambda^2 A | \pi] = 1 \), we get \([3|\pi] = \rho^{(p - 1)/3} \); hence \([3q|\pi] = \rho^{\kappa(q + 1)/3 + (p - 1)/3} \).
COMPUTATION OF THE SOLUTION OF $x^3 + Dy^3 = 1$

If $p \not\equiv 1 \pmod{9}$, then D is inadmissible if $(3 \mid p)_3 = 1$ or if $(3 \mid q \mid p)_3 \neq 1$ for some prime $q \mid A$ when $j \equiv -\kappa(p - 1)(q + 1)/9 \pmod{3}$.

If (β) is true, we must have $(p \mid q)_3 = 1$ for each prime $q \mid A$. Thus, if $p \equiv 1 \pmod{9}$, $(3 \mid p)_3 \neq 1$ and $(p \mid q)_3 \neq 1$ for some prime $q \mid A$, then neither (α) nor (β) is true.

With these results it is frequently possible to determine the inadmissibility of a value of D of the form $3^i p^n A$ by using a table of indices only. For example, if $D = 95545 = 5 \cdot 97 \cdot 197$, we have $p = 97$ and $p \not\equiv 1 \pmod{9}$. Also $(3 \mid p)_3 \neq 1$, $\epsilon = 0$, and $(197 \mid 97)_3 \neq 1$; hence, 95545 is inadmissible.

Department of Computer Science
University of Manitoba
Winnipeg, Manitoba R3T 2N2, Canada