Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Computation of the solution of $ x\sp{3}+Dy\sp{3}=1$


Authors: H. C. Williams and R. Holte
Journal: Math. Comp. 31 (1977), 778-785
MSC: Primary 10B10
DOI: https://doi.org/10.1090/S0025-5718-1977-0434946-0
MathSciNet review: 0434946
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: A computer technique for finding integer solutions of

$\displaystyle {x^3} + D{y^3} = 1$

is described, and a table of all integer solutions of this equation for all positive $ D \leqslant 50000$ is presented. Some theoretic results which describe certain values of D for which the equation has no nontrivial solution are also given.

References [Enhancements On Off] (What's this?)

  • [1] P. BACHMANN, Die Lehre von der Kreisteilung, 2nd ed., Teubner, Leipzig, 1921.
  • [2] B. D. BEACH, H. C. WILLIAMS &. C. R. ZARNKE, "Some computer results on units in quadratic and cubic fields," Proc. Twenty-Fifth Summer Meeting of Canad. Math. Congress, Lakehead Univ., Thunder Bay, Ontario, 1971, pp. 609-648. MR 49 #2656. MR 0337887 (49:2656)
  • [3] J. H. E. COHN, "The Diophantine equation $ {x^3} = d{y^3} + 1$," J. London Math. Soc., v. 42, 1967, pp. 750-752. MR 36 #106. MR 0217011 (36:106)
  • [4] B. N. DELONE & D. K. FADDEEV, "The theory of irrationalities of the third degree," Transl. Math. Monographs, vol. 10, Amer. Math. Soc., Providence, R.I., 1964. MR 28 #3955. MR 0160744 (28:3955)
  • [5] W. LJUNGGREN, "Einige Bemerkungen über die Darstellung ganzer Zahlen durch binären Kubischen Formen mit positiver Diskriminante," Acta Math., v. 75, 1943, pp. 1-21. MR 0017303 (8:135k)
  • [6] T. NAGELL, "Solution complète de quelques équations cubiques à deux indéterminees," J. Math. Pures Appl., (9), v. 4, 1925, pp. 209-270.
  • [7] T. NAGELL, "Einige Gleichungen der Form $ a{y^2} + by + c = d{x^3}$," Skr. Norske Vid.-Akad. Oslo, 1930, No. 7.
  • [8] E. S. SELMER, "The Diophantine equation $ a{x^3} + b{y^3} + c{z^3} = 0$," Acta Math., v. 85, 1951, pp. 203-362. MR 13, 13. MR 0041871 (13:13i)
  • [9] H. C. WILLIAMS & C. R. ZARNKE, "Computation of the solutions of the Diophantine equation $ {x^3} + d{y^3} = 1$," Proc. Manitoba Conf. on Numerical Mathematics, Univ. Manitoba, Winnipeg, Canada, 1971, pp. 671-676. MR 48 #10956. MR 0332630 (48:10956)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 10B10

Retrieve articles in all journals with MSC: 10B10


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0434946-0
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society