TABLE ERRATA

In Table 27.5, on p. 1003, the values of the integral \(f_m(x) = \int_0^\infty t^m e^{-t^2-x/t} \, dt \) corresponding to \(m = 1, 2, 3 \) and \(x = 0(0.01)0.05, 0.1(0.1)1.0 \) have been recalculated to 15S, and a total of 11 terminal-digit errors were thereby discovered. The 4D tabular values of \(f_1(x) \) should be increased by a final unit when \(x = 0.04, 0.05, 0.2, 0.4, \) and 0.5, and the values of \(f_3(x) \) should be similarly increased when \(x = 0.04, 0.05, 0.1, 0.5, \) and 1.0. An increase of two units in the last place is required in the value of \(f_3(0.7) \). The tabulated values of \(f_2(x) \) were found to be free of error.

The corrected values are partially confirmed by Table I in [1, p. 166].

Ove Skovgaard

Institute of Hydrodynamics & Hydraulic Engineering
Technical University of Denmark
DK-2800 Lyngby, Denmark

1. M. T. Chahine & R. Narasimha, "The integral \(\int_0^\infty v^n \exp\left[-(v-u)^2-x/v\right] \, dv \)," J. Math. and Phys., v. 43, 1964, pp. 163–168.

A complete check of Table III, on p. 300, revealed a total of eight errors, of which only one has been previously announced [1]; namely, in the 8D value of \(J_1(x_n) \) for \(n = 35 \), where for 35913, one should read 36383.

The 10D values of the zeros \(x_n \) of \(J_0(x) \) should be decreased by a final unit when \(n = 4, 5, \) and 8, and the 8D values of \(J_1(x_n) \) should be increased by a final unit when \(n = 5 \) and 16, and decreased by a similar amount when \(n = 14 \) and 24.

Accordingly, the second sentence under Table III (1922) in [1, p. 824] should be amended to read, "The only error, excluding roundoff errors, is"

Ove Skovgaard

On p. 21, in \(B_{59} \) the factor 12391 should be underlined.

On p. 47, in \(V_{152} \) the first underlined factor should read 562766385967, not 1562766385967.

On p. 49, in \(U_{213} \) for 308061521170129, read 6673 · 4615371073, and in \(U_{231} \) delete 29 and 199.

On p. 57, in \(U_{355} \) for 308061521170129, read 6673 · 4615371073.

John Brillhart

Department of Mathematics
The University of Arizona
Tucson, Arizona 85721

On p. 421, in Table 3, the second prime factor of \(N_{43} \) should be 120401 instead of 6709, which actually divides \(43^{43} + 1 \).

JOHN BRILLHART

EDITORIAL NOTE: Dr. Brillhart has supplied the following additional relevant information. \(N_{19}, N_{31} \), and the largest factor shown for \(N_{29} \) are all primes; the cofactors of \(N_{37}, N_{41}, \) and \(N_{47} \) are composite; the cofactor of \(N_{43} \) is a pseudoprime, base 13. Furthermore, the complete factorization of \(N_{23} \) is \(N_{23} = 461 \cdot 1289 \cdot 8316031789 \cdot 1920647391913 \).

On p. 535 the numerator of the last term shown of Mc Mahon’s asymptotic expansions for \(J_{1,s} \) should read 895,167,324 in place of 8,952,167,324.

This error also appears in previous editions of these tables.

OVE SKOVGAARD