Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

On the stability of Galerkin methods for initial-boundary value problems for hyperbolic systems


Author: Max D. Gunzburger
Journal: Math. Comp. 31 (1977), 661-675
MSC: Primary 65N30
MathSciNet review: 0436624
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The stability of approximating the solution of mixed initial-boundary value problems for hyperbolic systems by semidiscrete Galerkin methods is studied. It is shown that a particular straightforward Galerkin method yields an unstable approximation, and that this numerical instability is caused by an improper treatment of the boundary. Stable schemes are then presented, one of which differs from the unstable scheme only insofar as the treatment of the boundary is concerned. These stable schemes make use of a particular matrix which symmetrizes the differential system. It is therefore shown that the use of this matrix is crucial to the stability of the computations as well as for obtaining a priori bounds on the energy of the continuous system. This symmetrizing matrix is also related to the diagonalizing matrix for the system of hyperbolic equations and to the Lyapunov matrix for the system of ordinary differential equations resulting from the application of Galerkin's method.


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1977-0436624-0
PII: S 0025-5718(1977)0436624-0
Article copyright: © Copyright 1977 American Mathematical Society