Roots of two transcendental equations involving spherical Bessel functions

Authors:
Robert L. Pexton and Arno D. Steiger

Journal:
Math. Comp. **31** (1977), 752-753

MSC:
Primary 65D20; Secondary 33A40

DOI:
https://doi.org/10.1090/S0025-5718-1977-0438662-0

MathSciNet review:
0438662

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Roots of the transcendental equations and

*l*and the root index

*n*are: , , .

**[1]**Milton Abramowitz and Irene A. Stegun,*Handbook of mathematical functions with formulas, graphs, and mathematical tables*, National Bureau of Standards Applied Mathematics Series, vol. 55, For sale by the Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1964. MR**0167642****[2]**J. M. Blatt,*A stable method of inverse interpolation*, Austral. Comput. J.**7**(1975), no. 2, 51–57. MR**0386219****[3]**Fr. MECHEL, "Improvement in recurrence techniques for the computation of Bessel functions of integral order,"*Math. Comp.*, v. 22, 1968, pp. 202-205.**[4]**Eugene Jahnke, Fritz Emde, and Friedrich Lösch,*Tables of higher functions*, 6th ed. Revised by Friedrich Lösch, McGraw-Hill Book Co., Inc., New York-Toronto-London; B. G. Teubner Verlagsgesellschaft, Stuttgart, 1960. MR**0114317****[5]**L. Z. Salchev and V. B. Popov,*Determination of the zeros of a cross-product Bessel function*, Proc. Cambridge Philos. Soc.**74**(1973), 477–483. MR**0324097**

Retrieve articles in *Mathematics of Computation*
with MSC:
65D20,
33A40

Retrieve articles in all journals with MSC: 65D20, 33A40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0438662-0

Keywords:
Roots of transcendental equations,
spherical Bessel functions,
electromagnetic cavity resonators

Article copyright:
© Copyright 1977
American Mathematical Society