Algorithms for computing shape preserving spline interpolations to data

Authors:
David F. McAllister, Eli Passow and John A. Roulier

Journal:
Math. Comp. **31** (1977), 717-725

MSC:
Primary 65D05

DOI:
https://doi.org/10.1090/S0025-5718-1977-0448805-0

MathSciNet review:
0448805

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Algorithms are presented for computing a smooth piecewise polynomial interpolation which preserves the monotonicity and/or convexity of the data.

**[1]**Robert E. Barnhill and Richard F. Riesenfeld (eds.),*Computer aided geometric design*, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Inc.], New York-London, 1974. MR**0349061****[2]**Wayne T. Ford and John A. Roulier,*On interpolation and approximation by polynomials with monotone derivatives*, J. Approximation Theory**10**(1974), 123–130. MR**0350259****[3]**A. R. Forrest,*Interactive interpolation and approximation by Bézier polynomials*, Comput. J.**15**(1972), 71–79. MR**0315866**, https://doi.org/10.1016/0010-4485(90)90038-E**[4]**William J. Gordon and Richard F. Riesenfeld,*Bernstein-Bézier methods for the computer-aided design of free-form curves and surfaces*, J. Assoc. Comput. Mach.**21**(1974), 293–310. MR**0353625**, https://doi.org/10.1145/321812.321824**[5]**William J. Kammerer,*Polynomial approximations to finitely oscillating functions*, Math. Comp.**15**(1961), 115–119. MR**0123865**, https://doi.org/10.1090/S0025-5718-1961-0123865-3**[6]**G. G. Lorentz,*Bernstein polynomials*, Mathematical Expositions, no. 8, University of Toronto Press, Toronto, 1953. MR**0057370****[7]**Eli Passow,*Piecewise monotone spline interpolation*, J. Approximation Theory**12**(1974), 240–241. MR**0361544****[8]**Eli Passow,*An improved estimate of the degree of monotone interpolation*, J. Approximation Theory**17**(1976), no. 2, 115–118. MR**0417624****[9]**Eli Passow,*Monotone quadratic spline interpolation*, J. Approximation Theory**19**(1977), no. 2, 143–147. MR**0440246****[10]**Eli Passow and Louis Raymon,*The degree of piecewise monotone interpolation*, Proc. Amer. Math. Soc.**48**(1975), 409–412. MR**0430608**, https://doi.org/10.1090/S0002-9939-1975-0430608-4**[11]**Eli Passow and John A. Roulier,*Monotone and convex spline interpolation*, SIAM J. Numer. Anal.**14**(1977), no. 5, 904–909. MR**0470566**, https://doi.org/10.1137/0714060**[12]**Steven Pruess,*Properties of splines in tension*, J. Approximation Theory**17**(1976), no. 1, 86–96. MR**0407491****[13]**Zalman Rubinstein,*On polynomial 𝛿-type functions and approximation by monotonic polynomials*, J. Approximation Theory**3**(1970), 1–6. MR**0261228****[14]**H. Späth,*Exponential spline interpolation*, Computing (Arch. Elektron. Rechnen)**4**(1969), 225–233 (English, with German summary). MR**0248966****[15]**W. Wolibner,*Sur un polynôme d’interpolation*, Colloquium Math.**2**(1951), 136–137 (French). MR**0043946****[16]**Sam W. Young,*Piecewise monotone polynomial interpolation*, Bull. Amer. Math. Soc.**73**(1967), 642–643. MR**0212455**, https://doi.org/10.1090/S0002-9904-1967-11806-8

Retrieve articles in *Mathematics of Computation*
with MSC:
65D05

Retrieve articles in all journals with MSC: 65D05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0448805-0

Article copyright:
© Copyright 1977
American Mathematical Society