Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

On the imaginary bicyclic biquadratic fields with class-number $ 2$


Authors: D. A. Buell, H. C. Williams and K. S. Williams
Journal: Math. Comp. 31 (1977), 1034-1042
MSC: Primary 12A30; Secondary 12A50
DOI: https://doi.org/10.1090/S0025-5718-1977-0441914-1
MathSciNet review: 0441914
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Assuming that the list of imaginary quadratic number fields of class-number 4 is complete, a determination is made of all imaginary bicyclic biquadratic number fields of class-number 2.


References [Enhancements On Off] (What's this?)

  • [1] P. BARRUCAND & H. COHN, "A rational genus, class number divisibility, and unit theory for pure cubic fields," J. Number Theory, v. 2, 1970, pp. 7-21. MR 40 #2643. MR 0249398 (40:2643)
  • [2] E. BROWN & C. J. PARRY, "The imaginary bicyclic biquadratic fields with class-number 1," J. Reine Angew. Math., v. 266, 1974, pp. 118-120. MR 49 #4974. MR 0340219 (49:4974)
  • [3] D. A. BUELL, "Class groups of quadratic fields," Math. Comp., v. 30, 1976, pp. 610-623. MR 53 #8008. MR 0404205 (53:8008)
  • [4] D. A. BUELL, "Small class numbers and extreme values of L-functions of quadratic fields," Math. Comp., v. 31, 1977, pp. 786-796. MR 0439802 (55:12684)
  • [5] M. N. GRAS & G. GRAS, Nombre de Classes des Corps Quadratiques Réels $ Q(\sqrt m )$, $ m < 10000$, Institut de Mathématiques Pures, Université Scientifique et Médicale de Grenoble, 1971/72.
  • [6] G. HERGLOTZ, "Über einer Dirichletschen Satz," Math. Z., v. 12, 1922, pp. 255-261. MR 1544516
  • [7] E. L. INCE, Cycles of Reduced Ideals in Quadratic Fields, Mathematical Tables, vol. IV, British Association for the Advancement of Science, London, 1934.
  • [8] T. KUBOTA, "Über die Beziehung der Klassenzahlen der Unterkörper des bizyklischen biquadratischen Zahlkörpers," Nagoya Math. J., v. 6, 1953, pp. 119-127. MR 15, 605. MR 0059960 (15:605e)
  • [9] S. KURODA, "Über den Dirichletschen Körper," J. Fac. Sci. Imp. Univ. Tokyo Sect. I, v. 4, 1943, pp. 383-406. MR 9, 12. MR 0021031 (9:12f)
  • [10] H. L. MONTGOMERY & P. J. WEINBERGER, "Notes on small class numbers," Acta Arith., v. 24, 1974, pp. 529-542. MR 50 #9841. MR 0357373 (50:9841)
  • [11] H. M. STARK, "A complete determination of the complex quadratic fields of class-number one," Michigan Math. J., v. 14, 1967, pp. 1-27. MR 36 # 5102. MR 0222050 (36:5102)
  • [12] H. M. STARK, "On complex quadratic fields with class-number two," Math. Comp., v. 29, 1975, pp. 289-302. MR 51 # 5548. MR 0369313 (51:5548)
  • [13] H. C. WILLIAMS & J. BROERE, "A computational technique for evaluating $ L(1,\chi )$ and the class number of a real quadratic field," Math. Comp., v. 30, 1976, pp. 887-893. MR 0414522 (54:2623)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 12A30, 12A50

Retrieve articles in all journals with MSC: 12A30, 12A50


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0441914-1
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society