Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

Roots of two transcendental equations determining the frequency spectra of standing spherical electromagnetic waves


Authors: Robert L. Pexton and Arno D. Steiger
Journal: Math. Comp. 31 (1977), 1000-1002
MSC: Primary 65A05
MathSciNet review: 0443286
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Roots of the transcendental equations

$\displaystyle \frac{{{j_l}(\lambda )}}{{{y_l}(\lambda )}} = \frac{{{j_l}(\alpha... ... }} - \frac{1}{{\sqrt {\vert\varepsilon \vert} }}{y_{l - 1}}(\alpha \lambda )}}$

and

$\displaystyle \frac{{\eta {j_{l - 1}}(\eta ) - l{j_l}(\eta )}}{{\eta {y_{l - 1}... ...t\varepsilon \vert)} }}{{{i_l}(\alpha \eta \sqrt {\vert\varepsilon \vert)} }}}}$

for the spherical Bessel functions of the first and second kind, $ {j_l}(x)$ and $ {y_l}(x)$, and for the modified spherical Bessel functions of the first kind, $ {i_l}(x)$, have been computed. The ranges for the parameters $ \sqrt {\vert\varepsilon \vert} $ and $ \alpha $, the order l and the root index n are:

$\displaystyle \sqrt {\vert\varepsilon \vert} = 1.0,10.0,100.0,500.0;\quad \alpha = 0.1(0.1)0.7;\quad l = 1(1)15;\quad n = 1(1)30.$


References [Enhancements On Off] (What's this?)


Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65A05

Retrieve articles in all journals with MSC: 65A05


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1977-0443286-5
PII: S 0025-5718(1977)0443286-5
Keywords: Roots of transcendental equations, spherical Bessel functions, modified spherical Bessel functions, electromagnetic cavity resonators
Article copyright: © Copyright 1977 American Mathematical Society