Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Roots of two transcendental equations determining the frequency spectra of standing spherical electromagnetic waves

Authors: Robert L. Pexton and Arno D. Steiger
Journal: Math. Comp. 31 (1977), 1000-1002
MSC: Primary 65A05
MathSciNet review: 0443286
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Roots of the transcendental equations

$\displaystyle \frac{{{j_l}(\lambda )}}{{{y_l}(\lambda )}} = \frac{{{j_l}(\alpha... ... }} - \frac{1}{{\sqrt {\vert\varepsilon \vert} }}{y_{l - 1}}(\alpha \lambda )}}$


$\displaystyle \frac{{\eta {j_{l - 1}}(\eta ) - l{j_l}(\eta )}}{{\eta {y_{l - 1}... ...t\varepsilon \vert)} }}{{{i_l}(\alpha \eta \sqrt {\vert\varepsilon \vert)} }}}}$

for the spherical Bessel functions of the first and second kind, $ {j_l}(x)$ and $ {y_l}(x)$, and for the modified spherical Bessel functions of the first kind, $ {i_l}(x)$, have been computed. The ranges for the parameters $ \sqrt {\vert\varepsilon \vert} $ and $ \alpha $, the order l and the root index n are:

$\displaystyle \sqrt {\vert\varepsilon \vert} = 1.0,10.0,100.0,500.0;\quad \alpha = 0.1(0.1)0.7;\quad l = 1(1)15;\quad n = 1(1)30.$

References [Enhancements On Off] (What's this?)

  • [1] R. L. PEXTON & A. D. STEIGER, "Roots of two transcendental equations involving spherical Bessel functions," Math. Comp., v. 31, 1977, pp. MR 0438662 (55:11570)
  • [2] H. L. BOYEN, A. M. MESSIAEN & P. E. VANDENPLAS, "Experimental and theoretical eigenmodes of a spherical cavity partially filled with plasma," J. Appl. Phys., v. 40, 1969, pp. 2296-2305.
  • [3] M. ABRAMOWITZ & I. A. STEGUN (Editors), Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, Nat. Bur. Standards, Appl. Math. Ser., no. 55, Superintendent of Documents, U.S. Government Printing Office, Washington, D.C., 1965. MR 31 #1400. MR 0167642 (29:4914)
  • [4] J. M. BLATT, "A stable method of inverse interpolation," Austral. Comput. J., v. 7, 1975, pp. 51-57. MR 52 #7077. MR 0386219 (52:7077)
  • [5] Fr. MECHEL, "Improvement in recurrence techniques for the computation of Bessel functions of integral order," Math. Comp., v. 22, 1968, pp. 202-205.
  • [6] W. J. LENTZ, "Generating Bessel functions in Mie scattering calculations using continued fractions," Applied Optics, v. 15, 1976, pp. 668-671.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65A05

Retrieve articles in all journals with MSC: 65A05

Additional Information

Keywords: Roots of transcendental equations, spherical Bessel functions, modified spherical Bessel functions, electromagnetic cavity resonators
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society