Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

A least squares decomposition method for solving elliptic equations


Author: Dennis C. Jespersen
Journal: Math. Comp. 31 (1977), 873-880
MSC: Primary 65N30
DOI: https://doi.org/10.1090/S0025-5718-1977-0461948-0
MathSciNet review: 0461948
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper analyzes a numerical method for solving second-order elliptic partial differential equations. The idea is to write the equation as a lower-order system and solve the system using least squares techniques. Error estimates are derived for a model problem.


References [Enhancements On Off] (What's this?)

  • [1] IVO BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 3-359. MR 49 #11824. MR 0421106 (54:9111)
  • [2] J. H. BRAMBLE & J. A. NITSCHE, "A generalized Ritz-least-squares method for Dirichlet problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 81-93. MR 47 #2836. MR 0314284 (47:2836)
  • [3] J. H. BRAMBLE & A. H. SCHATZ, "Least squares methods for 2mth order elliptic boundary-value problems," Math. Comp., v. 25, 1971, pp. 1-32. MR 45 #4657. MR 0295591 (45:4657)
  • [4] J. BRAMBLE & V. THOMÉE, "Semidiscrete least-squares methods for a parabolic boundary value problem," Math. Comp., v. 26, 1972, pp. 633-648. MR 50 # 1532. MR 0349038 (50:1532)
  • [5] D. JESPERSEN, A Least Squares Decomposition Method for the Numerical Solution of Elliptic Partial Differential Equations, Dissertation, University of Michigan, 1976.
  • [6] J.-L. LIONS & E. MAGENES, Problèmes aux Limites Non Homogènes et Applications. Vol. 1, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
  • [7] P. P. LYNN & S. K. ARYA, "Use of the least squares criterion in the finite element formulation," Internat. J. Numer. Methods Engrg., v. 6, 1973, pp. 75-88. MR 48 #7752. MR 0329410 (48:7752)
  • [8] J. A. NITSCHE, "Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens," Numer. Math., v. 11, 1968, pp. 346-348. MR 38 # 1823. MR 0233502 (38:1823)
  • [9] J. N. REDDY & J. T. ODEN, "Mixed finite-element approximations of linear boundaryvalue problems," Quart. Appl. Math., v. 33, 1975, pp. 255-280. MR 0451782 (56:10064)
  • [10] R. TEMAM, On the Theory and Numerical Analysis of the Navier-Stokes Equations, Lecture Notes, University of Maryland, 1973.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30

Retrieve articles in all journals with MSC: 65N30


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1977-0461948-0
Keywords: Rayleigh-Ritz Galerkin methods, least squares approximation, mixed methods
Article copyright: © Copyright 1977 American Mathematical Society

American Mathematical Society