A least squares decomposition method for solving elliptic equations
Author:
Dennis C. Jespersen
Journal:
Math. Comp. 31 (1977), 873880
MSC:
Primary 65N30
MathSciNet review:
0461948
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: This paper analyzes a numerical method for solving secondorder elliptic partial differential equations. The idea is to write the equation as a lowerorder system and solve the system using least squares techniques. Error estimates are derived for a model problem.
 [1]
Ivo
Babuška and A.
K. Aziz, Survey lectures on the mathematical foundations of the
finite element method, The mathematical foundations of the finite
element method with applications to partial differential equations (Proc.
Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York,
1972, pp. 1–359. With the collaboration of G. Fix and R. B.
Kellogg. MR
0421106 (54 #9111)
 [2]
James
H. Bramble and Joachim
A. Nitsche, A generalized Ritzleastsquares method for Dirichlet
problems, SIAM J. Numer. Anal. 10 (1973),
81–93. MR
0314284 (47 #2836)
 [3]
J.
H. Bramble and A.
H. Schatz, Least squares methods for 2𝑚th
order elliptic boundaryvalue problems, Math.
Comp. 25 (1971),
1–32. MR
0295591 (45 #4657), http://dx.doi.org/10.1090/S00255718197102955918
 [4]
James
H. Bramble and Vidar
Thomée, Semidiscrete leastsquares methods for
a parabolic boundary value problem, Math.
Comp. 26 (1972),
633–648. MR 0349038
(50 #1532), http://dx.doi.org/10.1090/S00255718197203490384
 [5]
D. JESPERSEN, A Least Squares Decomposition Method for the Numerical Solution of Elliptic Partial Differential Equations, Dissertation, University of Michigan, 1976.
 [6]
J.L.
Lions and E.
Magenes, Problèmes aux limites non homogènes et
applications. Vol. 1, Travaux et Recherches Mathématiques, No.
17, Dunod, Paris, 1968 (French). MR 0247243
(40 #512)
 [7]
Paul
P. Lynn and Santosh
K. Arya, Use of the least squares criterion in the finite element
formulation, Internat. J. Numer. Methods Engrg. 6
(1973), 75–88. MR 0329410
(48 #7752)
 [8]
J.
Nitsche, Ein Kriterium für die QuasiOptimalität des
Ritzschen Verfahrens, Numer. Math. 11 (1968),
346–348 (German). MR 0233502
(38 #1823)
 [9]
J.
N. Reddy and J.
T. Oden, Mixed finiteelement approximations of linear
boundaryvalue problems, Quart. Appl. Math. 33
(1975/76), no. 3, 255–280. MR 0451782
(56 #10064)
 [10]
R. TEMAM, On the Theory and Numerical Analysis of the NavierStokes Equations, Lecture Notes, University of Maryland, 1973.
 [1]
 IVO BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method," The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations (A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 3359. MR 49 #11824. MR 0421106 (54:9111)
 [2]
 J. H. BRAMBLE & J. A. NITSCHE, "A generalized Ritzleastsquares method for Dirichlet problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 8193. MR 47 #2836. MR 0314284 (47:2836)
 [3]
 J. H. BRAMBLE & A. H. SCHATZ, "Least squares methods for 2mth order elliptic boundaryvalue problems," Math. Comp., v. 25, 1971, pp. 132. MR 45 #4657. MR 0295591 (45:4657)
 [4]
 J. BRAMBLE & V. THOMÉE, "Semidiscrete leastsquares methods for a parabolic boundary value problem," Math. Comp., v. 26, 1972, pp. 633648. MR 50 # 1532. MR 0349038 (50:1532)
 [5]
 D. JESPERSEN, A Least Squares Decomposition Method for the Numerical Solution of Elliptic Partial Differential Equations, Dissertation, University of Michigan, 1976.
 [6]
 J.L. LIONS & E. MAGENES, Problèmes aux Limites Non Homogènes et Applications. Vol. 1, Dunod, Paris, 1968. MR 40 #512. MR 0247243 (40:512)
 [7]
 P. P. LYNN & S. K. ARYA, "Use of the least squares criterion in the finite element formulation," Internat. J. Numer. Methods Engrg., v. 6, 1973, pp. 7588. MR 48 #7752. MR 0329410 (48:7752)
 [8]
 J. A. NITSCHE, "Ein Kriterium für die QuasiOptimalität des Ritzschen Verfahrens," Numer. Math., v. 11, 1968, pp. 346348. MR 38 # 1823. MR 0233502 (38:1823)
 [9]
 J. N. REDDY & J. T. ODEN, "Mixed finiteelement approximations of linear boundaryvalue problems," Quart. Appl. Math., v. 33, 1975, pp. 255280. MR 0451782 (56:10064)
 [10]
 R. TEMAM, On the Theory and Numerical Analysis of the NavierStokes Equations, Lecture Notes, University of Maryland, 1973.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30
Retrieve articles in all journals
with MSC:
65N30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704619480
PII:
S 00255718(1977)04619480
Keywords:
RayleighRitz Galerkin methods,
least squares approximation,
mixed methods
Article copyright:
© Copyright 1977
American Mathematical Society
