A least squares decomposition method for solving elliptic equations

Author:
Dennis C. Jespersen

Journal:
Math. Comp. **31** (1977), 873-880

MSC:
Primary 65N30

DOI:
https://doi.org/10.1090/S0025-5718-1977-0461948-0

MathSciNet review:
0461948

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: This paper analyzes a numerical method for solving second-order elliptic partial differential equations. The idea is to write the equation as a lower-order system and solve the system using least squares techniques. Error estimates are derived for a model problem.

**[1]**IVO BABUŠKA & A. K. AZIZ, "Survey lectures on the mathematical foundations of the finite element method,"*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 3-359. MR**49**#11824. MR**0421106 (54:9111)****[2]**J. H. BRAMBLE & J. A. NITSCHE, "A generalized Ritz-least-squares method for Dirichlet problems,"*SIAM J. Numer. Anal.*, v. 10, 1973, pp. 81-93. MR**47**#2836. MR**0314284 (47:2836)****[3]**J. H. BRAMBLE & A. H. SCHATZ, "Least squares methods for 2*m*th order elliptic boundary-value problems,"*Math. Comp.*, v. 25, 1971, pp. 1-32. MR**45**#4657. MR**0295591 (45:4657)****[4]**J. BRAMBLE & V. THOMÉE, "Semidiscrete least-squares methods for a parabolic boundary value problem,"*Math. Comp.*, v. 26, 1972, pp. 633-648. MR**50**# 1532. MR**0349038 (50:1532)****[5]**D. JESPERSEN,*A Least Squares Decomposition Method for the Numerical Solution of Elliptic Partial Differential Equations*, Dissertation, University of Michigan, 1976.**[6]**J.-L. LIONS & E. MAGENES,*Problèmes aux Limites Non Homogènes et Applications*. Vol. 1, Dunod, Paris, 1968. MR**40**#512. MR**0247243 (40:512)****[7]**P. P. LYNN & S. K. ARYA, "Use of the least squares criterion in the finite element formulation,"*Internat. J. Numer. Methods Engrg.*, v. 6, 1973, pp. 75-88. MR**48**#7752. MR**0329410 (48:7752)****[8]**J. A. NITSCHE, "Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens,"*Numer. Math.*, v. 11, 1968, pp. 346-348. MR**38**# 1823. MR**0233502 (38:1823)****[9]**J. N. REDDY & J. T. ODEN, "Mixed finite-element approximations of linear boundaryvalue problems,"*Quart. Appl. Math.*, v. 33, 1975, pp. 255-280. MR**0451782 (56:10064)****[10]**R. TEMAM,*On the Theory and Numerical Analysis of the Navier-Stokes Equations*, Lecture Notes, University of Maryland, 1973.

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30

Retrieve articles in all journals with MSC: 65N30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0461948-0

Keywords:
Rayleigh-Ritz Galerkin methods,
least squares approximation,
mixed methods

Article copyright:
© Copyright 1977
American Mathematical Society