Optimizing the arrangement of points on the unit sphere

Authors:
Joel Berman and Kit Hanes

Journal:
Math. Comp. **31** (1977), 1006-1008

MSC:
Primary 52-04; Secondary 52A15, 90C30

DOI:
https://doi.org/10.1090/S0025-5718-1977-0478006-1

MathSciNet review:
0478006

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: This paper is concerned with the problem of placing *N* points on the unit sphere in so as to maximize the sum of their mutual distances. A necessary condition is proved which led to a computer algorithm. This in turn led to the apparent best arrangements for values of *N* from 5 to 10 inclusive.

**[1]**R. Alexander,*On the sum of distances between 𝑛 points on a sphere*, Acta Math. Acad. Sci. Hungar.**23**(1972), 443–448. MR**0312395**, https://doi.org/10.1007/BF01896964**[2]**Ralph Alexander and Kenneth B. Stolarsky,*Extremal problems of distance geometry related to energy integrals*, Trans. Amer. Math. Soc.**193**(1974), 1–31. MR**0350629**, https://doi.org/10.1090/S0002-9947-1974-0350629-3**[3]**Joel D. Berman and Kit Hanes,*Volumes of polyhedra inscribed in the unit sphere 𝐸³*, Math. Ann.**188**(1970), 78–84. MR**0266052**, https://doi.org/10.1007/BF01435416**[4]**G. D. Chakerian and M. S. Klamkin,*Inequalities for sums of distances*, Amer. Math. Monthly**80**(1973), 1009–1017. MR**0331224**, https://doi.org/10.2307/2318775**[5]**Harvey Cohn,*Stability configurations of electrons on a sphere*, Math. Tables Aids Comput.**10**(1956), 117–120. MR**0081133**, https://doi.org/10.1090/S0025-5718-1956-0081133-0**[6]**L. Fejes Tóth,*On the sum of distances determined by a pointset*, Acta Math. Acad. Sci. Hungar**7**(1956), 397–401 (English, with Russian summary). MR**0107212**, https://doi.org/10.1007/BF02020534**[7]**M. GOLDBERG, "Stability configurations of electrons on a sphere,"*Math. Comp.*, v. 23, 1969, pp. 785-786.**[8]**D. W. GRACE, "Search for largest polyhedra,"*Math. Comp.*, v. 17, 1963, pp. 197-199.**[9]**Einar Hille,*Some geometric extremal problems*, J. Austral. Math. Soc.**6**(1966), 122–128. MR**0198349****[10]**Theodor William Melnyk, Osvald Knop, and William Robert Smith,*Extremal arrangements of points and unit charges on a sphere: equilibrium configurations revisited*, Canad. J. Chem.**55**(1977), no. 10, 1745–1761 (English, with French summary). MR**0444497****[11]**Kenneth B. Stolarsky,*The sum of the distances to 𝑁 points on a sphere*, Pacific J. Math.**57**(1975), no. 2, 563–573. MR**0396417****[12]**Kenneth B. Stolarsky,*Sums of distances between points on a sphere. II*, Proc. Amer. Math. Soc.**41**(1973), 575–582. MR**0333995**, https://doi.org/10.1090/S0002-9939-1973-0333995-9

Retrieve articles in *Mathematics of Computation*
with MSC:
52-04,
52A15,
90C30

Retrieve articles in all journals with MSC: 52-04, 52A15, 90C30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1977-0478006-1

Article copyright:
© Copyright 1977
American Mathematical Society