A numerical conception of entropy for quasilinear equations
Author:
A. Y. le Roux
Journal:
Math. Comp. 31 (1977), 848872
MSC:
Primary 65M10; Secondary 35F25
MathSciNet review:
0478651
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A family of difference schemes solving the Cauchy problem for quasilinear equations is studied. This family contains wellknown schemes such as the decentered, Lax, Godounov or LaxWendroff schemes. Two conditions are given, the first assures the convergence to a weak solution and the second, more restrictive, implies the convergence to the solution in Kružkov's sense, which satisfies an entropy condition that guarantees uniqueness. Some counterexamples are proposed to show the necessity of such conditions.
 [1]
Edward
Conway and Joel
Smoller, Clobal solutions of the Cauchy problem for quasilinear
firstorder equations in several space variables, Comm. Pure Appl.
Math. 19 (1966), 95–105. MR 0192161
(33 #388)
 [2]
A. DOUGLIS, "Lectures on discontinuous solutions of first order non linear partial differential equations," North British Symposium on Partial Differential Equations, 1972.
 [3]
Eberhard
Hopf, On the right weak solution of the Cauchy problem for a
quasilinear equation of first order, J. Math. Mech.
19 (1969/1970), 483–487. MR 0251357
(40 #4588)
 [4]
S.
N. Kružkov, First order quasilinear equations with several
independent variables., Mat. Sb. (N.S.) 81 (123)
(1970), 228–255 (Russian). MR 0267257
(42 #2159)
 [5]
Peter
D. Lax, Weak solutions of nonlinear hyperbolic equations and their
numerical computation, Comm. Pure Appl. Math. 7
(1954), 159–193. MR 0066040
(16,524g)
 [6]
Peter
Lax and Burton
Wendroff, Systems of conservation laws, Comm. Pure Appl. Math.
13 (1960), 217–237. MR 0120774
(22 #11523)
 [7]
A. Y. LE ROUX, Résolution numérique du problème de Cauchy pour une equation hyperbolique quasilineaire à une ou plusieurs variables d'espace, Thèse 3e cycle, Rennes, 1974.
 [8]
S. OHARU & T. TAKAHASHI, "A convergence theorem of nonlinear semigroups, and its applications to first order quasilinear equations." (To appear.)
 [9]
O.
A. Oleĭnik, Discontinuous solutions of nonlinear
differential equations, Amer. Math. Soc. Transl. (2)
26 (1963), 95–172. MR 0151737
(27 #1721)
 [10]
O. A. OLEĬNIK, "Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation," Amer. Math. Soc. Transl. (2), v. 33, 1963, pp. 285290. MR 22 #8187.
 [11]
Robert
D. Richtmyer and K.
W. Morton, Difference methods for initialvalue problems,
Second edition. Interscience Tracts in Pure and Applied Mathematics, No. 4,
Interscience Publishers John Wiley & Sons, Inc., New
YorkLondonSydney, 1967. MR 0220455
(36 #3515)
 [12]
L.
F. Shampine and R.
J. Thompson, Difference methods for nonlinear
firstorder hyperbolic systems of equations, Math. Comp. 24 (1970), 45–56. MR 0263269
(41 #7874), http://dx.doi.org/10.1090/S00255718197002632691
 [1]
 E. CONWAY & A. SMOLLER, "Global solutions of the Cauchy problem for quasilinear firstorder equations in several space variables," Comm. Pure Appl. Math., v. 19, 1966, pp. 95105. MR 33 #388. MR 0192161 (33:388)
 [2]
 A. DOUGLIS, "Lectures on discontinuous solutions of first order non linear partial differential equations," North British Symposium on Partial Differential Equations, 1972.
 [3]
 E. HOPF, "On the right weak solution of the Cauchy problem for a quasilinear equation of first order," J. Math. Mech., v. 19, 1969/70, pp. 483487. MR 40 #4588. MR 0251357 (40:4588)
 [4]
 S. N. KRUžKOV, "First order quasilinear equations with several independent variables," Mat. Sb. (N. S), v. 81 (123), 1970, pp. 228255 = Math. USSR Sbornik, v. 10, 1970, pp. 217243. MR 42 #2159. MR 0267257 (42:2159)
 [5]
 P. D. LAX, "Weak solutions of nonlinear hyperbolic equations and their numerical computation," Comm. Pure Appl. Math., v. 7, 1954, pp. 159193. MR 16, 524. MR 0066040 (16:524g)
 [6]
 P. D. LAX & B. WENDROFF, "Systems of conservation laws," Comm. Pure Appl. Math., v. 13, 1960, pp. 217237. MR 22 #11523. MR 0120774 (22:11523)
 [7]
 A. Y. LE ROUX, Résolution numérique du problème de Cauchy pour une equation hyperbolique quasilineaire à une ou plusieurs variables d'espace, Thèse 3e cycle, Rennes, 1974.
 [8]
 S. OHARU & T. TAKAHASHI, "A convergence theorem of nonlinear semigroups, and its applications to first order quasilinear equations." (To appear.)
 [9]
 O. A. OLEĬNIK, "Discontinuous solutions of nonlinear differential equations," Amer. Math. Soc. Transl. (2), v. 26, 1963, pp. 95172. MR 20 #1055; 27 #1721. MR 0151737 (27:1721)
 [10]
 O. A. OLEĬNIK, "Uniqueness and stability of the generalized solution of the Cauchy problem for a quasilinear equation," Amer. Math. Soc. Transl. (2), v. 33, 1963, pp. 285290. MR 22 #8187.
 [11]
 R. D. RICHTMYER & K. W. MORTON, Difference Methods for InitialValue Problems, 2nd ed., Wiley, New York, 1967. MR 36 #3515. MR 0220455 (36:3515)
 [12]
 L. F. SHAMPINE & R. J. THOMPSON, "Difference methods for nonlinear firstorder hyperbolic systems of equations," Math. Comp., v. 24, 1970, pp. 4556. MR 41 #7874. MR 0263269 (41:7874)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65M10,
35F25
Retrieve articles in all journals
with MSC:
65M10,
35F25
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197704786513
PII:
S 00255718(1977)04786513
Article copyright:
© Copyright 1977
American Mathematical Society
