Odd Integers N With Five Distinct Prime Factors for Which $2 - 10^{-12} < \sigma(N)/N < 2 + 10^{-12}$

By Masao Kishore*

Abstract. We make a table of odd integers N with five distinct prime factors for which $2 - 10^{-12} < \sigma(N)/N < 2 + 10^{-12}$, and show that for such N $|\sigma(N)/N - 2| > 10^{-14}$. Using this inequality, we prove that there are no perfect numbers, no quasiperfect numbers and no odd almost perfect numbers with five distinct prime factors. We also make a table of odd primitive abundant numbers N with five distinct prime factors for which $2 < \sigma(N)/N < 2 + 2/10^{10}$.

1. A positive integer N is called perfect, quasiperfect (QP), or almost perfect according as $\sigma(N) = 2N$, $2N + 1$, or $2N - 1$, respectively, where $\sigma(N)$ is the sum of the positive divisors of N. While twenty-four even perfect numbers are known, no odd perfect (OP) numbers, no QP numbers, and no almost perfect numbers except a power of 2 are known.

In this paper we make a table of odd integers N with five distinct prime factors for which

\[2 - 10^{-12} < \sigma(N)/N < 2 + 10^{-12}, \]

and we show that for such N

\[|\sigma(N)/N - 2| > 10^{-14}. \]

Using this inequality, we prove that there are no OP, QP, or odd almost perfect (OAP) numbers with five distinct prime factors.

N is called primitive abundant if N is abundant ($\sigma(N) > 2N$) and every proper divisor M of N is deficient ($\sigma(M) < 2M$). In 1913 Dickson [4] published a table of odd primitive abundant numbers with less than five distinct prime factors. In this paper we also make a table of odd primitive abundant numbers N with five distinct prime factors for which

\[2 < \sigma(N)/N < 2 + 2/10^{10}. \]

2. Throughout this paper we let $N = \Pi_{i=1}^{r} p_i^{a_i}$ where $3 < p_1 < \cdots < p_r$ are primes and a_i's are positive integers. $p_i^{a_i}$ is called a component of N.

We define

\[\sigma(p) = \min\{a|p^{a+1} > 10^{12}\}, \]

\[\omega(N) = r, \]

\[S(N) = \sigma(N)/N = \prod_{i=1}^{r} (p_i^{a_i+1} - 1)/p_i^{a_i}(p_i - 1), \]

Received December 6, 1976; revised March 23, 1977.

*This paper is a part of the author's doctoral dissertation which was submitted to Princeton University in August 1977 and directed by Professor J. Chidambaramsamy of the University of Toledo.

Copyright © 1978, American Mathematical Society

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
\[A(N) = \left[\prod_{a_1 < a(p_i)} S(p_i^{a_i}) \right] \left[\prod_{a_1 \geq a(p_i)} S(p_i^{a_i(p_i)}) \right], \]

\[B(N) = \left[\prod_{a_1 < a(p_i)} S(p_i^{a_i}) \right] \left[\prod_{a_1 \geq a(p_i)} p_i / (p_i - 1) \right], \]

\[L(p^a) = \begin{cases} \left\lfloor \frac{10^{12} \log S(p^a)}{10^{12}} \right\rfloor & \text{if } a < a(p), \\
\left\lfloor \frac{10^{12} \log p_i / (p_i - 1)}{10^{12}} \right\rfloor & \text{if } a \geq a(p), \end{cases} \]

where \(\lfloor \rfloor \) is the greatest integer function. We note that if \(p, q \) are primes with \(p > q \) and \(a, b \) are positive integers then

\[S(p^a) = \frac{(p^a + 1 - 1)}{p^a(p - 1)} < p/(p - 1) = \lim_{a \to \infty} S(p^a) \leq (q + 1)/q \leq S(q^b), \]

and so \(L(p^a) \leq L(q^b) \) and \(A(N) \leq S(N) \leq B(N) \). Hence, we have

Lemma 1. (a) If \(A(N) > 2 - 10^{-12} \) and \(B(N) < 2 + 10^{-12} \), \(N \) satisfies (1).
(b) If \(A(N) < 2 - 10^{-12} < B(N) < 2 + 10^{-12} \), some \(N \) satisfies (1).
(c) If \(2 - 10^{-12} < A(N) < 2 + 10^{-12} \leq B(N) \), some \(N \) satisfies (1).
(d) If \(A(N) < 2 - 10^{-12} \) and \(2 + 10^{-12} < B(N) \), some \(N \) may satisfy (1).
(e) If \(2 + 10^{-12} < A(N) \) or \(B(N) < 2 - 10^{-12} \), \(N \) does not satisfy (1).

In Lemmas 2 through 5 we assume that \(N \) satisfies (1) and \(\omega(N) = 5 \).

Lemma 2.

\[0.6931471805544 < \sum_{i=1}^{5} L(p_i^{b_i}) < 0.6931471805655, \]

where \(b_i = \min \{ a_i, a(p_i) \} \).

Proof. Suppose \(p^a \) is a component of \(N \). If \(a < a(p) \), then

\[|\log S(p^a) - L(p^a)| < 10^{-12}. \]

If \(a \geq a(p) \), then \(p^{a + 1} > 10^{12} \) and

\[10^{-12} > \log p_i / (p_i - 1) - L(p^a) > \log S(p^a) - L(p^a) \geq \log S(p^a) - \log p_i / (p_i - 1) \]

\[= \log \left(1 - 1/p^{a + 1} \right) = - \sum_{i=1}^{\infty} 1/i(p^{a + 1}) > -1/(p^{a + 1} - 1) \geq -10^{-12}. \]

Hence

\[|\log S(p^a) - L(p^a)| < 10^{-12}. \]

Since (1) holds,

\[0.6931471805544 < \log(2 - 10^{-12}) - 5/10^{12} \]

\[< \sum_{i=1}^{5} \log S(p_i^{a_i}) - 5/10^{12} < \sum_{i=1}^{5} L(p_i^{b_i}) \]

\[< \sum_{i=1}^{5} \log S(p_i^{a_i}) + 5/10^{12} < \log(2 + 10^{-12}) + 5/10^{12} \]

\[< 0.6931471805655. \quad Q.E.D. \]
Lemma 3. $p_1 = 3$, $p_2 \leq 11$ and $p_3 \leq 41$.

Proof. Lemma 3 follows from the following inequalities:

\[
\begin{align*}
\frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} &< 2 - 10^{-12}, \\
\frac{3}{2} \frac{13}{12} \frac{17}{16} \frac{19}{18} \frac{23}{22} &< 2 - 10^{-12}, \\
\frac{3}{2} \frac{5}{4} \frac{43}{42} \frac{47}{46} \frac{53}{52} &< 2 - 10^{-12}. \quad \text{Q.E.D.}
\end{align*}
\]

Lemma 4. $p_4 < 5000$.

Proof. Suppose N satisfies (1) and $p_4 \geq 5003$. Then

\[
\begin{align*}
0 &< L(p_5^{b_5}) < L(p_4^{b_4}) < \log S(p_4^{b_4}) + 10^{-12} \\
&< \log p_4/(p_4 - 1) + 10^{-12} < 1/(p_4 - 1) + 10^{-12} \\
&< 0.0002.
\end{align*}
\]

Hence by (3)

\[0.69274 < \sum_{i=1}^{3} L(p_i^{b_i}) < 0.69315.\]

A computer (PDP11 at the University of Toledo) was used to find $\prod_{i=1}^{4} p_i^{b_i}$ satisfying (4), but there were none. Q.E.D.

Similarly, we can prove

Lemma 5. $p_5 < 3000000$, or $\prod_{i=1}^{5} p_i^{b_i} = 3^5 5^3 17^2 233$ and $36549767 \leq p_5 \leq 36551083$.

The computer was used to find $N = \prod_{i=1}^{5} p_i^{b_i}$ satisfying $a_i \leq a(p_i)$, Lemmas 3, 4, 5, and Lemma 2 or Lemma 1(b), (c), (d), with the result given in Table 1.

Lemma 6. Suppose $N = \prod_{i=1}^{5} p_i^{b_i}$ and $M = \prod_{i=1}^{5} p_i^{b_i}$ where $b_i = \min \{a_i, a(p_i)\}$.

If $M = 3^{23} 5^{12} 17^6 257^4 65521$, $|S(N) - 2| > 5/10^{13}$;

if $M = 3^{514} 17^3 251 \cdot 1884529$, $|S(N) - 2| > 2/10^{14}$;

if $M = 3^8 5^9 17^3 251 \cdot 1579769$, $|S(N) - 2| > 3/10^{13}$;

if $M = 3^8 5^8 17^9 269^4 4153^3$, $|S(N) - 2| > 4/10^{14}$;

if $\prod_{i=1}^{4} p_i^{b_i} = 3^7 5^5 17^2 233$, $|S(N) - 2| > 10^{-14}$.

In all other cases $|S(N) - 2| > 10^{-13}$.

Proof. The first part of Lemma 6 follows from the following inequalities:

\[
\begin{align*}
S(3^{23} 5^{12} 17^6 257^4 65521) &< 2 - 5/10^{13}, \\
S(3^{23} 5^{12} 17^6 257^4 65521) &> 2 + 1/10^{12}, \\
S(3^8 5^{14} 17^3 251) 1884529/1884528 &< 2 - 2/10^{14}, \\
S(3^8 5^9 17^3 251 \cdot 1579769) &< 2 - 4/10^{13}, \\
S(3^8 5^9 17^3 251 \cdot 1579769^2) &> 2 + 3/10^{13}, \\
S(3^8 5^8 269^4) 17/16 \cdot 4153/4152 &< 2 - 4/10^{14}, \\
S(3^8 5^8 17^9 269^4 4153^3) &> 2 + 3/10^{13}, \\
S(3^7 5^5 17^2 233 \cdot 36550379) &> 2 + 5/10^{14},
\end{align*}
\]
Suppose \(|S(N) - 21| < 10^{-13} \). Then (1) holds, and so \(N \) is given in Table 1; however, for every \(N \) in Table 1 except for those given above \(S(N) = B(N) < 2 - 10^{-13} \), or \(S(N) = A(N) > 2 + 10^{-13} \). Q.E.D.

We have proved

THEOREM. If \(N \) is an odd integer with \(\omega(N) = 5 \), \(|\sigma(N)/N - 21| > 10^{-14} \).

3. We used a similar method to find odd primitive abundant numbers \(N = \prod_{i=1}^{5} p_i^{a_i} \) for which (2) holds, with the result given in Table 2 in the microfiche.

Table 2 includes odd primitive abundant numbers \(N \) with \(\omega(N) = 5 \) one of whose component \(p^a \) is greater than \(10^{10} \); for, letting \(M = N/p^a \), we have

\[
2 < \sigma(N)/N = \sigma(M)\sigma(p^a)/M\sigma(p^a) = \sigma(M)(\sigma(p^{a-1}) + 1)/M\sigma(p^a) = \sigma(M\sigma(p^{a-1}))/M\sigma(p^{a-1}) + \sigma(M)/M\sigma(p^a) < 2 + 2/10^{10},
\]

showing that (2) holds.

4. Suppose \(N \) is an odd integer such that \(\sigma(N) = 2N + A \). If \(|A/N| < 10^{-14} \), then by our Theorem \(\omega(N) \geq 6 \). We give three examples of such \(N \).

Suppose \(N \) is OP. Sylvester (1888), Dickson (1913), and Kanold (1949) proved that \(\omega(N) \geq 5 \). From our Theorem we have

PROPOSITION 1. If \(N \) is OP, \(\omega(N) \geq 6 \).

This fact was also proved by Gradšteīn (1925), Kühnel (1949) and Webber (1951). Pomerance [1] (1972) and Robbins (1972) proved that \(\omega(N) \geq 7 \), and Hagis [2] proved that \(\omega(N) \geq 8 \).

PROPOSITION 2. If \(N \) is QP, \(\omega(N) \geq 6 \).

Proof. By [3] if \(N \) is QP, then \(N \) is an odd perfect square, \(\omega(N) \geq 5 \) and \(N > 10^{20} \). Hence \(2 < S(N) = 2 + 1/N < 2 + 10^{-20} \), and so by Theorem \(\omega(N) \geq 6 \). Q.E.D.

LEMMA 7. If \(N \) is OAP, \(pN \) is primitive abundant for some \(p \nmid N \).

Proof. Suppose \(N = \prod_{i=1}^{a} p_i^{a_i} \) is OAP, and choose \(j \) so that \(\sigma(p_i^{a_i}) > \sigma(p_i^{a_i}) \) for every \(i \). Letting \(p = p_j \), \(a = a_j \) and \(L = N/p^a \), we have

\[
2p^aL - 1 = \sigma(N) = \sigma(p^a)\sigma(L) = (1 + p\sigma(p^{a-1}))\sigma(L) = \sigma(L) + p\sigma(p^{a-1})\sigma(L).
\]

Hence \(p \mid \sigma(L) + 1 \). If \(p = \sigma(L) + 1 \), then

\[
\sum_{i=1}^{a+1} p_i = \sigma(p^a)p = \sigma(p^a)\sigma(L) + \sigma(p^a)
\]

\[
= \sigma(N) + \sigma(p^a) = 2p^aL - 1 + \sigma(p^a) = 2p^aL + \sum_{i=1}^{a} p_i,
\]

or \(p^{a+1} = 2p^aL \), showing that \(N = 2^a \). Since \(N \) is OAP, \(p \neq \sigma(L) + 1 \), and so \(p < \sigma(L) \) because \(p \mid \sigma(L) + 1 \). Then

\[
\sigma(pN) = \sigma(p^{a+1})\sigma(L) = (1 + p\sigma(p^{a}))\sigma(L) = \sigma(L) + p\sigma(N) = \sigma(L) + 2pN - p > 2pN,
\]

showing that \(pN \) is abundant.
Suppose \(M \) is a proper divisor of \(p \mathbb{N} \). If \(p^{a+1} \nmid M \), then \(M \) is a divisor of \(\mathbb{N} \), and \(M \) is deficient because

\[
S(M) = S(\mathbb{N}) = 2 - 1/\mathbb{N} < 2.
\]

Suppose \(p^{a+1} \mid M \). Then for some \(k, p^a \nmid M \). Letting \(q = p_k \) and \(b = a_k \), we have

\[
\sigma(p^a) \geq \sigma(q^b),
\]

or

\[
\sum_{i=1}^{b} q^i \leq \sum_{i=1}^{a} p^i < \sum_{i=1}^{a+1} p^i.
\]

Hence

\[
(1/p^{a+1}) \sum_{i=0}^{b-1} q^{-i} < (1/q^b) \sum_{i=0}^{a} p^{-i},
\]

and by adding \(\sum_{i=0}^{b-1} q^{-i} \) to both sides we obtain

\[
\sum_{i=0}^{a+1} p^{-i} \sum_{i=0}^{b-1} q^{-i} < \sum_{i=0}^{a} p^{-i} \sum_{i=0}^{b} q^{-i},
\]

or \(S(p^{a+1}) S(q^{b-1}) < S(p^a) S(q^b) \). Then

\[
S(M) < S(p^{a+1}) S(q^{b-1}) \prod_{i \neq j, k} S(p_i^i) < S(p^a) S(q^b) \prod_{i \neq j, k} S(p_i^i) = S(\mathbb{N}) < 2,
\]

showing that \(M \) is deficient. Q.E.D.

Lemma 8. If \(N = \Pi_{i=1}^r p_i^{a_i} \) is OAP, \(a_i \) is even. If \(p_1 = 3, a_1 \geq 12 \).

Proof. Suppose \(N \) is OAP, \(p_1 \) is a component of \(N \), \(q \) is a prime and \(q \mid \sigma(p^a) \).

Since \(\sigma(N) = 2N - 1 \) is odd and \(\sigma(p^a) \mid \sigma(N), \sigma(p^a) = \sum_{i=0}^{a} p_i^i \) is odd. Hence \(a \) is even.

Since \(q \mid 2\sigma(N) = 4N - 2 \) and \(4N \) is a perfect square, \((2 \mid q) = 1 \), where \((2 \mid q) \) is the Legendre symbol, and so \(q \equiv 1 \) or \(7 \) (mod 8) because \((2 \mid q) = (-1)^{(q^2-1)/8} \). Also \(\sigma(p^a) \equiv 1 \) or \(7 \) (mod 8), for, otherwise, \(\sigma(p^a) \) would have a prime factor \(\equiv 3 \) or 5 (mod 8).

Suppose \(p = 3 \) and \(a = 2e \). Then \(\sigma(3^{2e}) \equiv 1 + 4e \equiv 1 \) or \(7 \) (mod 8), or \(e \equiv 0 \) (mod 2). Hence \(a = 4, 8, 12, \ldots \); however, \(a \neq 4 \) or 8 because \(11 \mid \sigma(3^4), 11 \equiv 3 \) (mod 8), \(13 \mid \sigma(3^8) \) and \(13 \equiv 5 \) (mod 8). Q.E.D.

Proposition 4. If \(N \) is OAP, \(\omega(N) \geq 6 \).

Proof. Suppose \(N = \Pi_{i=1}^r p_i^{a_i} \) is OAP. Then by Lemma 7 \(pN \) is primitive abundant for some \(p \mid N \). If \(3 \nmid N, \omega(N) \geq 7 \), for, otherwise,

\[
2 < S(pN) < \prod_{i=1}^r \frac{p_i}{p_i - 1} \leq \frac{5}{4} \frac{7}{6} \frac{11}{10} \frac{13}{12} \frac{17}{16} \frac{19}{18} < 2.
\]

Suppose \(3 \mid N \). Then \(3^{12} \mid pN \) by Lemma 8. According to the table of odd primitive abundant numbers \(M \) with fewer than five distinct prime factors in [4] \(3^{12} \nmid M \).
Hence \(\omega(N) \geq 5 \), and \(N \geq 3^{12}5^27^211^213^2 > 10^{13} \). Then \(2 > \sigma(N) = 2 - 1/N > 2 - 10^{-13} \), and by Lemma 6 \(\omega(N) \geq 6 \). Q.E.D.

For other results on QP and OAP see [3], [5], [6], [7] and [8].

Computer time for Tables 1 and 2 was over four hours.

Table 1

\[N = \prod_{i=1}^{S} p_i^{a_i} \text{ for which } 2 - 10^{-12} < \sigma(N)/N < 2 + 10^{-12} \]

<table>
<thead>
<tr>
<th>(p_1^{a_1})</th>
<th>(p_2^{a_2})</th>
<th>(p_3^{a_3})</th>
<th>(p_4^{a_4})</th>
<th>(p_5^{a_5})</th>
</tr>
</thead>
<tbody>
<tr>
<td>3^{25}</td>
<td>5^5</td>
<td>17^7</td>
<td>251</td>
<td>570407(b)</td>
</tr>
<tr>
<td>3^{23}</td>
<td>5^12</td>
<td>17^6</td>
<td>257^4</td>
<td>65521(c)</td>
</tr>
<tr>
<td>3^{22}</td>
<td>5^5</td>
<td>17^6</td>
<td>251</td>
<td>569659^2</td>
</tr>
<tr>
<td>3^{21}</td>
<td>5^9</td>
<td>17^9</td>
<td>257^4</td>
<td>65099^2(b)</td>
</tr>
<tr>
<td></td>
<td>5^5</td>
<td>17^5</td>
<td>251</td>
<td>557273</td>
</tr>
<tr>
<td>3^{20}</td>
<td>5^{14}</td>
<td>17^5</td>
<td>257^4</td>
<td>65357(b)</td>
</tr>
<tr>
<td>3^{19}</td>
<td>5^3</td>
<td>17^3</td>
<td>181</td>
<td>57149^2</td>
</tr>
<tr>
<td>3^{18}</td>
<td>5^5</td>
<td>17^5</td>
<td>251</td>
<td>557017^2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>17^4</td>
<td>251</td>
<td>406811^2</td>
</tr>
<tr>
<td>3^{16}</td>
<td>5^5</td>
<td>17^8</td>
<td>251</td>
<td>567943^2</td>
</tr>
<tr>
<td>3^{12}</td>
<td>5^5</td>
<td>17^5</td>
<td>251</td>
<td>412943^2</td>
</tr>
<tr>
<td>3^{11}</td>
<td>5^{12}</td>
<td>17^9</td>
<td>257^3</td>
<td>58337(c)</td>
</tr>
<tr>
<td>3^{10}</td>
<td>5^{10}</td>
<td>17^9</td>
<td>257^3</td>
<td>47791^2(c)</td>
</tr>
<tr>
<td>3^9</td>
<td>7^3</td>
<td>13^5</td>
<td>19^2</td>
<td>1009643(b)</td>
</tr>
<tr>
<td>3^8</td>
<td>5^{16}</td>
<td>17^8</td>
<td>257^4</td>
<td>15137^2(c)</td>
</tr>
<tr>
<td></td>
<td>5^{14}</td>
<td>17^3</td>
<td>251</td>
<td>1884527(c)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1884529</td>
</tr>
<tr>
<td>5^{13}</td>
<td>17^3</td>
<td>251</td>
<td>1884061(c)</td>
<td></td>
</tr>
<tr>
<td>5^{11}</td>
<td>17^3</td>
<td>251</td>
<td>1870207</td>
<td></td>
</tr>
<tr>
<td>5^9</td>
<td>17^3</td>
<td>251</td>
<td>1579769</td>
<td></td>
</tr>
<tr>
<td>5^8</td>
<td>17^9</td>
<td>269^4</td>
<td>4153^3(d)</td>
<td></td>
</tr>
<tr>
<td>5^3</td>
<td>19^9</td>
<td>83^6</td>
<td>493277</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19^8</td>
<td>83^3</td>
<td>488203^2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>19^7</td>
<td>83^4</td>
<td>493201</td>
<td></td>
</tr>
<tr>
<td>3^7</td>
<td>5^6</td>
<td>17^2</td>
<td>233</td>
<td>(e)</td>
</tr>
</tbody>
</table>

Note:
(a) If \(b_i = a(p_i) \) and \(c > 0 \), \(Np_i^c \) also satisfies (1). See Lemma 1(a).
(b) See Lemma 1(b). (c) See Lemma 1(c). (d) See Lemma 1(d).
(e) \(36549767 < p_5 < 36551083 \).

