Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle

Author: Philippe G. Ciarlet
Journal: Math. Comp. 32 (1978), 335-344
MSC: Primary 65N30; Secondary 41A25
MathSciNet review: 482249
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: We study the unisolvence and interpolation properties of the reduced Hsieh-Clough-Tocher triangle. This finite element of class $ {\mathcal{C}^1}$, which has only nine degrees of freedom, can be used in the numerical approximation of plate problems.

References [Enhancements On Off] (What's this?)

  • [1] James H. Bramble and Miloš Zlámal, Triangular elements in the finite element method, Math. Comp. 24 (1970), 809–820. MR 0282540, 10.1090/S0025-5718-1970-0282540-0
  • [2] P. G. Ciarlet, Sur l’élément de Clough et Tocher, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 8 (1974), no. R-2, 19–27 (French, with loose English summary). MR 0381349
  • [3] Philippe G. Ciarlet, Numerical analysis of the finite element method, Les Presses de l’Université de Montréal, Montreal, Que., 1976. Séminaire de Mathématiques Supérieures, No. 59 (Été 1975). MR 0495010
  • [4] Philippe G. Ciarlet, The finite element method for elliptic problems, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. Studies in Mathematics and its Applications, Vol. 4. MR 0520174
  • [5] P. G. Ciarlet and P.-A. Raviart, General Lagrange and Hermite interpolation in 𝑅ⁿ with applications to finite element methods, Arch. Rational Mech. Anal. 46 (1972), 177–199. MR 0336957
  • [6] R. W. CLOUGH & J. L. TOCHER, "Finite element stiffness matrices for analysis of plates in bending," in Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio, 1965.
  • [7] J. NEČAS, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.
  • [8] Peter Percell, On cubic and quartic Clough-Tocher finite elements, SIAM J. Numer. Anal. 13 (1976), no. 1, 100–103. MR 0408198
  • [9] P.-A. RAVIART, Méthode des Eléments Finis, Lecture Notes (D.E.A. Analyse Numérique), Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), 1972.
  • [10] Alexander Ženíšek, Interpolation polynomials on the triangle, Numer. Math. 15 (1970), 283–296. MR 0275014
  • [11] A. ŽENÍŠEK, "A general theorem on triangular finite $ {C^{(m)}}$-elements," Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 1974, pp. 119-127.
  • [12] O. C. Zienkiewicz, The finite element method in engineering science, McGraw-Hill, London-New York-Düsseldorf, 1971. The second, expanded and revised, edition of The finite element method in structural and continuum mechanics. MR 0315970
  • [13] M. ZLÁMAL, "On the finite element method," Numer. Math., v. 12, 1968, pp. 394-409.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 41A25

Retrieve articles in all journals with MSC: 65N30, 41A25

Additional Information

Article copyright: © Copyright 1978 American Mathematical Society