Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)



Interpolation error estimates for the reduced Hsieh-Clough-Tocher triangle

Author: Philippe G. Ciarlet
Journal: Math. Comp. 32 (1978), 335-344
MSC: Primary 65N30; Secondary 41A25
MathSciNet review: 482249
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We study the unisolvence and interpolation properties of the reduced Hsieh-Clough-Tocher triangle. This finite element of class $ {\mathcal{C}^1}$, which has only nine degrees of freedom, can be used in the numerical approximation of plate problems.

References [Enhancements On Off] (What's this?)

  • [1] J. H. BRAMBLE & M. ZLÁMAL, "Triangular elements in the finite element method," Math. Comp., v. 24, 1970, pp. 809-820. MR 0282540 (43:8250)
  • [2] P. G. CIARLET, "Sur l'élément de Clough et Tocher," Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 1974, pp. 19-27. MR 0381349 (52:2246)
  • [3] P. G. CIARLET, Numerical Analysis of the Finite Element Method, Presses de l'Université de Montréal, Montréal, 1976. MR 0495010 (58:13778)
  • [4] P. G. CIARLET, The Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, 1977. MR 0520174 (58:25001)
  • [5] P. G. CIARLET & P.-A. RAVIART, "General Lagrange and Hermite interpolation in $ {R^n}$ with applications to finite element methods," Arch. Rational Mech. Anal., v. 46, 1972, pp. 177-199. MR 0336957 (49:1730)
  • [6] R. W. CLOUGH & J. L. TOCHER, "Finite element stiffness matrices for analysis of plates in bending," in Proc. Conf. on Matrix Methods in Structural Mechanics, Wright-Patterson A.F.B., Ohio, 1965.
  • [7] J. NEČAS, Les Méthodes Directes en Théorie des Equations Elliptiques, Masson, Paris, 1967.
  • [8] P. PERCELL, "On cubic and quartic Clough-Tocher finite elements," SIAM J. Numer. Anal., v. 13, 1976, pp. 100-103. MR 0408198 (53:11963)
  • [9] P.-A. RAVIART, Méthode des Eléments Finis, Lecture Notes (D.E.A. Analyse Numérique), Laboratoire d'Analyse Numérique, Université Pierre et Marie Curie (Paris VI), 1972.
  • [10] A. ŽENÍŠEK, "Interpolation polynomials on the triangle," Numer. Math., v. 15, 1970, pp. 283-296. MR 0275014 (43:772)
  • [11] A. ŽENÍŠEK, "A general theorem on triangular finite $ {C^{(m)}}$-elements," Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. R-2, 1974, pp. 119-127.
  • [12] O. C. ZIENKIEWICZ, The Finite Element Method in Engineering Science, McGraw-Hill, London, 1971. MR 0315970 (47:4518)
  • [13] M. ZLÁMAL, "On the finite element method," Numer. Math., v. 12, 1968, pp. 394-409.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65N30, 41A25

Retrieve articles in all journals with MSC: 65N30, 41A25

Additional Information

Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society