Improved error estimates for numerical solutions of symmetric integral equations

Author:
E. Rakotch

Journal:
Math. Comp. **32** (1978), 399-404

MSC:
Primary 65R20

DOI:
https://doi.org/10.1090/S0025-5718-1978-0482253-3

MathSciNet review:
482253

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The most widely employed method for a numerical solution of a symmetric integral equation with kernel in interval is the replacement of the original problem by the sequence of eigenproblems

**[1]**P. LINZ, "On the numerical computation of eigenvalues and eigenvectors of symmetric integral equations,"*Math. Comp.*, v. 24, 1970, pp. 905-910. MR**43**#1461. MR**0275708 (43:1461)****[2]**S. G. MIHLIN,*Lectures on Linear Integral Equations*, Fizmatgiz, Moscow, 1959; English transl., Russian Monographs and Texts on Advanced Math. and Phys., vol. 2, Gordon and Breach, New York; Hindustan, Delhi, 1960. MR**23**#A490;**24**#A3483. MR**0123161 (23:A490)****[3]**E. RAKOTCH, "Numerical solution for eigenvalues and eigenfunctions of a Hermitian kernel and an error estimate,"*Math. Comp.*, v. 29, 1975, pp. 794-805. MR**51**#9556. MR**0373356 (51:9556)****[4]**H. WIELANDT,*Error Bounds for Eigenvalues of Symmetric Integral Equations*, Proc. Sympos. Appl. Math., Vol. 6, Amer. Math. Soc., Providence, R. I., 1956, pp. 261-282. MR 19, 179. MR**0086402 (19:179e)****[5]**J. H. WILKINSON,*Rounding Errors in Algebraic Processes*, Prentice-Hall, Englewood Cliffs, N. J., 1963. MR**28**#4661. MR**0161456 (28:4661)****[6]**I. H. WILKINSON,*The Algebraic Eigenvalue Problem*, Clarendon Press, Oxford, 1965. MR**32**#1894. MR**0184422 (32:1894)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65R20

Retrieve articles in all journals with MSC: 65R20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0482253-3

Article copyright:
© Copyright 1978
American Mathematical Society