On the convergence of a quasi-Newton method for sparse nonlinear systems

Author:
Binh Lam

Journal:
Math. Comp. **32** (1978), 447-451

MSC:
Primary 65H10

MathSciNet review:
0483389

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that an algorithm for solving a system of nonlinear equations where the Jacobian is known to be sparse, converges locally and *Q*-superlinearly.

**[1]**C. G. Broyden,*A class of methods for solving nonlinear simultaneous equations*, Math. Comp.**19**(1965), 577–593. MR**0198670**, 10.1090/S0025-5718-1965-0198670-6**[2]**C. G. Broyden,*The convergence of single-rank quasi-Newton methods*, Math. Comp.**24**(1970), 365–382. MR**0279993**, 10.1090/S0025-5718-1970-0279993-0**[3]**C. G. Broyden,*The convergence of an algorithm for solving sparse nonlinear systems*, Math. Comp.**25**(1971), 285–294. MR**0297122**, 10.1090/S0025-5718-1971-0297122-5**[4]**C. G. Broyden, J. E. Dennis Jr., and Jorge J. Moré,*On the local and superlinear convergence of quasi-Newton methods*, J. Inst. Math. Appl.**12**(1973), 223–245. MR**0341853****[5]**J. E. Dennis Jr. and Jorge J. Moré,*A characterization of superlinear convergence and its application to quasi-Newton methods*, Math. Comp.**28**(1974), 549–560. MR**0343581**, 10.1090/S0025-5718-1974-0343581-1**[6]**L. V. Kantorovich and G. P. Akilov,*Functional analysis in normed spaces*, Translated from the Russian by D. E. Brown. Edited by A. P. Robertson. International Series of Monographs in Pure and Applied Mathematics, Vol. 46, The Macmillan Co., New York, 1964. MR**0213845****[7]**L. K. Schubert,*Modification of a quasi-Newton method for nonlinear equations with a sparse Jacobian*, Math. Comp.**24**(1970), 27–30. MR**0258276**, 10.1090/S0025-5718-1970-0258276-9

Retrieve articles in *Mathematics of Computation*
with MSC:
65H10

Retrieve articles in all journals with MSC: 65H10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0483389-3

Article copyright:
© Copyright 1978
American Mathematical Society