The Comparison of Numerical Methods for Solving Polynomial Equations

By Aurél Galántai

Abstract. In this paper we compare the Turán process [5]-[6] with the Lehmer-Schur method [2]. We prove that the latter is better.

1. The Algorithms. We first describe the Turán process [5]-[6] which can be considered as an improvement of Graeffe’s method. For the complex polynomial

\[p_0(z) = \sum_{j=0}^{n} a_j z^j = 0 \quad (a_j \in \mathbb{C}, a_{00}a_{n0} \neq 0), \]

the method can be formulated as follows.

Let

\[p_j(z) = p_{j-1}(\sqrt{z})p_{j-1}(-\sqrt{z}) = \sum_{k=0}^{n} a_{kj} z^j \quad (j = 1, 2, \ldots) \]

be the \(j\)th Graeffe transformation and let

\[M[p_0(z), m_0] = \left[\max_{1 \leq k \leq n} \left| \frac{a_k}{n} \frac{\mu_0/k}{\mu_0} \right| \right]^{-1}, \]

where \(\mu_0 = 2^{-m_0}, \sigma_0 = 0, \)

\[\sigma_k = \left[k a_{km_0} - \sum_{j=1}^{k-1} a_{jm_0} \sigma_{k-j} \right] / a_{0m_0} \quad (k = 1, \ldots, n) \]

and \(m_0 \geq 1 \) is fixed.

Let the constants \(\alpha_{m_0}, l \) be defined by the inequalities

\[0.5 < \alpha_{m_0} < 2^{-\mu_0}, \quad l > \pi \left[\arccos \frac{2.5 + \alpha_{m_0}}{2 + 2\alpha_{m_0}} \right]^{-1}, \quad m_0 \geq 2. \]

Then with the notations

\[M^{(0)} = M[p_0(z), m_0], \quad S^{(0)} = 0, \]

the \(d\)th step of the algorithm is the following:

1. Algorithm (T). (i) Let

\[S^{(d+1)} = S^{(d)} + 0.5(1 + \alpha_{m_0})M^{(d)} \exp \left(\frac{2\pi i}{l + 1} \right), \]

where \(j = 0, 1, \ldots, l \) and \(i = \sqrt{-1} \).

Received January 14, 1976; revised August 18, 1976.

AMS (MOS) subject classifications (1970). Primary 65H05.
(ii) If there exists an index \(j \) such that \(p_0(S_j^{(d+1)}) = 0 \), then we get a root and the process terminates.

(iii) Let us compute the quantities

\[
M_j^{(d+1)} = M[p_0(z + S_j^{(d+1)}), m_0], \quad (j = 0, 1, \ldots, l)
\]

and let

\[
M_j^{(d+1)} = \min_j M_j^{(d+1)} = M_j^{(d+1)}, \quad S^{(d+1)} = S_j^{(d+1)}.
\]

Turán [5] proved that \(S^{(d)} \) tends to a root of \(p_0(z) \), and the convergence is linear. Turán [5] also proved that the number of iterations needed to achieve an arbitrary relative error \(\varepsilon (>0) \) is independent of \(p_0(z) \) and depends on degree \(p_0(z) \) only.

Our purpose is to answer the remarks of the last section of [6]. For this reason we compare the Turán process with the Lehmer-Schur method which is often applied in practice ([2], [3], [4]). This algorithm can be described as follows.

Let

\[
(1.6) \quad T[p_0(z)] = \sum_{j=0}^{n-1} (a_0 a_j - a_n a_{n-j,0}) z^j
\]

and

\[
(1.7) \quad T^j[p_0(z)] = T[T^{j-1}[p_0(z)]], \quad (j = 2, \ldots).
\]

Let us compute the numbers \(c_j = T^j[p_0(0)], (j = 1, \ldots, k) \), where

\[
(1.8) \quad k = \min \{m \in \mathbb{N} | c_m = 0 \}.
\]

Here, \(\mathbb{N} \) denotes the set of nonnegative integers. With the aid of the sequence \(\{c_j\}_{j=1}^k \) we define the function \(N[p_0(z)] \) as follows

\[
N[p_0(z)] = \begin{cases}
1 & \text{if } \exists j \in \{1, \ldots, k-1\} \text{ such that } c_j < 0, \\
0 & \text{if } c_j > 0 (j = 1, \ldots, k-1) \text{ and degree } T^{k-1}[p_0(z)] = 0, \\
-1 & \text{otherwise.}
\end{cases}
\]

Lehmer [2] proved that if \(N[p_0(z)] = 1 \) then the polynomial \(p_0(z) \) has a root in \(\{z \in \mathbb{C} | |z| < 1\} \), if \(N[p_0(z)] = 0 \) then \(p_0(z) \) has no roots in this set. We shall return to the case \(N[p_0(z)] = -1 \).

Let us introduce the notations

\[
(1.9) \quad \gamma_j^{(d)} = \begin{cases}
0.5 \gamma_0^{(d)} R^{(d-1)} & (j = 0), \\
0.4 \gamma_j^{(d)} R^{(d-1)} & (j = 1, \ldots, 8),
\end{cases}
\]

and

\[
(1.10) \quad \beta_j^{(d)} = \begin{cases}
z^{(d-1)} & (j = 0), \\
z^{(d-1)} + \frac{0.75 R^{(d-1)}}{\cos \frac{\pi}{8}} \exp \left(\frac{2\pi i (j-1)}{8} \right) & (j = 1, \ldots, 8),
\end{cases}
\]
where the sequences \(\{R^{(d)}\} \), \(\{z^{(d)}\} \) and \(\{\gamma^{(d)}_j\} \) are defined by the \(d \)th step of the Lehmer-Schur method (\(d = 1, \ldots \)). Let \(p_0(z) = p_0(z)/\psi \) (\(\psi > 0 \)) and
\[
(1.11) \quad z^{(0)} = 0; \quad R^{(0)} = 1 + \max_i \left| \frac{a_j}{a_{n_0}} \right| .
\]
Then the \(d \)th step can be written as follows.

2. Algorithm (L). (i) If there exists an index \(j \) such that \(p_0(\beta_j^{(d)}) = 0 \), then we get a root and the process terminates.

(ii) We choose the index \(j \in \{0, 1, \ldots, 8\} \) such that
\[
N[p_0(\alpha_j^{(d)}z + \beta_j^{(d)})] = 1
\]
and let
\[
z^{(d)} = \beta_j^{(d)}, \quad R^{(d)} = \alpha_j^{(d)}.
\]
The numbers \(\gamma^{(d)}_j \in [1, 1 + \delta] \), \((\delta \leq 0.5) \) are chosen such that \(N[p_0(\alpha_j^{(d)}z + \beta_j^{(d)})] \geq 0 \) will be satisfied (except in unusual circumstances \(\gamma^{(d)}_j = 1 \) can be chosen). Lehmer [2] proved that process converges linearly. The number of iteration steps needed to achieve an arbitrary absolute error \(\epsilon > 0 \) depends on \(p_0(z) \).

2. The Limitations of the Algorithms. Denote by \(Z \) the set of integers and let \(P_n \) be the set of complex polynomials of degree \(n \).

A numerical method \(M \) (iterative process) for solving \(p_0(z) = 0 \) where \(p_0(z) \in P_n \) can be identified with the sequence \(\{b_k\} \subset C \) which rises from the computation. This sequence depends on \(p_0(z) \) and will be denoted by \(\{M_{p_0}\} = \{b_k\} \). There exists a subsequence \(\{b_{k_j}\} \) of \(\{b_k\} \) such that
\[
(2.1) \quad z^* = \lim_{j \to \infty} b_{k_j} \quad \text{and} \quad p_0(z^*) = 0.
\]
A digital computer can perform elementary (complex) operations only over the finite set
\[
(2.2) \quad S[0, K] \cap C_\delta ,
\]
where \(S[0, K] = \{z \in C \mid \|z\| \leq K\} \) and
\[
(2.3) \quad C_\delta = \{z \in C \mid z = k\delta + j\delta i : k, j \in Z \} \quad (\delta > 0).
\]
If there exists an element \(b_{k_0} \) in the sequence \(\{b_k\} \) such that \(\|b_{k_0}\| > K \), then the algorithm \(M \) cannot continue to run because of overflow.

In order to study the overflow we introduce the class of polynomials
\[
(2.4) \quad P_M(a, K, K^*) = \{p_0(z) \in P(a, K^*) \mid \{M_{p_0}\} \subset S[0, K], \|\{M_{p_0}\}\| = \infty\},
\]
where
\[
(2.5) \quad P(a, K^*) = \{p_0(z) \in P_n \mid 0 < \|z_j\| \leq a \ (j = 1, \ldots, n), \|p_0(z)\| \leq K^*\}
\]
and
(2.6) \[\| p_0(z) \| = \max_i |a_i| \]

Here \(|\{ M_{P_0} \}| \) denotes the cardinality of \(\{ b_k \} \), and \(z_j \) is the \(j \)th zero of \(p_0(z) \).

The set \(P_M(a, K, K^*) \) represents the class of all polynomials which can be solved by \(M \) in a bounded set.

The following statements are valid.

Theorem 2.1. The set \(P_M(a, K, K^*) \) defined by Algorithm 1 is empty for every \(a, K, K^* > 0 \).

Proof. If the roots of \(p_0(z) \) are arranged so that

(2.7) \[|z_1| \geq |z_2| \geq \ldots \geq |z_n| \]

then the estimate

(2.8) \[5^{-\mu_0} \leq \frac{|z_n|}{M[p_0(z), m_0]} \leq 1 \]

is valid (see [5]–[6]). For this reason the convergence of Algorithm 1 is identical with

(2.9) \[|z_n^{(d)}| \leq c q^d \quad (c > 0, 0 < q < 1), \]

where \(z_n^{(d)} \) is the zero of \(p_0(z + S^{(d)}) \), \((d = 0, 1, \ldots) \) of minimal absolute value.

Using the inequality (2.8), we have

(2.10) \[\frac{n}{5 c^d \left(\frac{1}{q}\right)^{d/\mu_0}} \leq \frac{n}{5 |z_n^{(d)}|^{1/\mu_0}} \leq |\sigma_k^{(d)}| \quad (d \geq d^*) \]

where \(k(d) \in \{1, \ldots, n\} \) is the index of the maximal element in (1.3) and

(2.11) \[\frac{n}{5 c^d \left(\frac{1}{q}\right)^{d/\mu_0}} > 1. \]

Since \(|\sigma_k^{(d)}| = O(w^d) \), where \(w = (1/q)^{1/\mu_0} \), therefore for a large index \(d_0 \)

(2.12) \[|\sigma_k^{(d)}| > K \quad (d \geq d_0) \]

is satisfied. Thus the theorem is proved.

Theorem 2.2. If \(K \geq K^* 2^{n+1} (1 + a^n 2^n)^{n+1} + 1 \), then

(2.13) \[P_L(a, K, K^*) = P(a, K^*) \]

is satisfied for Algorithm 2.

Proof. It is easy to see that the quantities recurring in the algorithm satisfy the inequalities

(2.14) \[|p_0(\beta^{(d)}_j)| \leq \begin{cases} \|p_0\| 2^{n+1} & (a < 0.5), \\ \|p_0\| (1 + 2^n a^n)^{n+1} & (a \geq 0.5), \end{cases} \]

(2.15) \[\| T^j [p_0(z)] \| \leq \frac{3}{4} (2\|p_0(z)\|)^{2j} \quad (j = 1, \ldots, n) \]
and
\[(2.16) \quad \|p_0(\alpha^{(d)}_j z + \beta^{(d)}_j)\| \leq \|p_0(z)\|(2 + 2^{n+1}a^n)^n \quad (j = 0, 1, \ldots, 8),\]
for \(d = 0, 1, \ldots \). With the notation
\[\delta = \|p_0(z)\|(2 + 2^{n+1}a^n)^n,\]
and by using (2.15)–(2.16), we have
\[(2.17) \quad \|T^k[p_0(\alpha^{(d)}_j z + \beta^{(d)}_j)]\| \leq \frac{\delta}{2}2^k \quad (k = 1, \ldots, n).\]
Since \(K\) is greater than the right side of (2.14) and (2.16), using \(\psi > 2\delta\) we can get
\[\delta < 0.5\]
which proves the theorem.

The difference between Algorithms 1 and 2 is caused by the fact that Algorithm 1 is based on the inequality (2.8) while Algorithm 2 is based on the characteristic function \(N[p_0(z)]\) which is invariant for the mapping \(p_0(z) \mapsto p_0(z)/\psi, (\psi > 0)\).

We remark that Algorithm 1 modified by the mappings
\[p_0(z) \mapsto p_0(z)/\psi, \quad p_0(z) \mapsto p_0(z/\psi) \quad (0 < \psi \leq K)\]
also has a \(P_T(a, K, K^*)\) empty for every \(a, K, K^* > 0\).

3. The Study of Cost Functions. In the previous section it was proved that Algorithm 1 is unapplicable. Since an approximate solution with a given error \(\epsilon > 0\) can be computed in the bounded set \(S[0, \tilde{K}]\), where \(\tilde{K}\) depends on \(p_0(z)\), \(\epsilon\), and the method \(M\), further analysis of the algorithms is necessary.

The cost function of the \(j\)th algorithm \((j = 1, 2)\) is defined by the number of additions and multiplications per step and denoted by \(K^j_m\) and \(K^j_a\).

Assuming that the computing time of the \(k\)th root can be characterized by three additions and three multiplications (which is a rough underestimate), the cost function of Algorithm 1 is
\[(3.1) \quad K^1_m = (l + 1)(m_0 + 4)^\frac{n^2}{2} + (l + 1)(m_0 + 8)^\frac{n}{4} + O(1),\]
\[(3.2) \quad K^2_a = (l + 1)(m_0 + 4)^\frac{n^2}{4} + (2l + 3)n + O(1).\]

For the cost function of Algorithm 2 the inequalities
\[(3.3) \quad K^2_m \leq 27n^2 - 18n,\]
\[(3.4) \quad K^2_a \leq 9n^2 + 36n,\]
hold.

If we identify the bounds (3.3)–(3.4) with the cost of one step, then the speed of Algorithm 2 is
\[(3.5) \quad |z^{(d)} - z^*| \leq c_2(2/5)^d \quad (d = 0, 1, \ldots).\]

The speed of Algorithm 1 is
\[(3.6) \quad |S^{(d)} - z^*| \leq c_1[q(\alpha_{m_0}, m_0, l)]^d \quad (d = 0, 1, \ldots),\]
where

\[(3.7) \quad q(\alpha_{m_0}, m_0, l) = \left[1 + 0.25(1 + \alpha_{m_0})^2 - (1 + \alpha_{m_0})\cos \frac{\pi}{l + 1} \right]^{1/2} \alpha_{m_0}^{-1}. \]

If \(\delta = (m_0 + 4)(l + 1)/54 > 1\) and \(n \geq n'\), then

\[(3.8) \quad K_m^1 \geq \delta K_m^2 \quad \text{and} \quad K_a^1 \geq \delta K_a^2. \]

Theorem 3.1. If \(l \geq l'\), then

\[(3.9) \quad q(\alpha_{m_0}, m_0, l) > (2/5)^\delta. \]

Proof. For a large \(l'\)

\[(3.10) \quad q(\alpha_{m_0}, m_0, l') \geq 1 - \frac{(\cos \pi/(l + 1))^2}{\alpha_{m_0}^2} > \frac{9\alpha_{m_0}^{-2}}{(l + 1)^2} \quad (l' \geq l) \]

and

\[(3.11) \quad (5/2)^\delta > l + 1. \]

From this fact the theorem immediately follows.

If \(l \geq l'\), then the cost of \(d\) steps of Algorithm 1 gives \([\delta d]\) steps using the Lehmer-Schur method. By Theorem 3.1 we have

\[(3.12) \quad c^*[q(\alpha_{m_0}, m_0, l)]^d > (2/5)^{[\delta d]} \quad (c^* > 0, d \geq d_0), \]

which proves that the Lehmer-Schur process is faster than the Turán process. For the parameters \(m_0 = 4, \alpha_4 = 0.9, l = 11\), (see [5]–[6]) the relation (3.12) is also satisfied. This can be verified easily by (3.10) and (3.11).

In the paper [6] there is a reference to the infinite precision integer arithmetics [1] for the sake of application of Algorithm 1. It is known [1] that the computing time of the multiplication is at most

\[(3.13) \quad l(x)^{1+\tau} \quad (1 \geq \tau > 0) \]

units of time (\(l(x)\) denotes the length of \(x\) in the binary system). Since Algorithm 1 has to use numbers of length at least \(2^{m_0-2}l(x)\) where \(l(x)\) is needed by Algorithm 2, for the cost functions in the measure of computing time,

\[(3.14) \quad K_m^1(t) \geq (\delta 2^{m_0-2})^{1+\tau} K_m^2(t) \]

is satisfied. As a simple corollary, in (3.12) we can write \(\delta 2^{m_0-2}\) instead of \(\delta\). This fact increases the relative convergence speed of the Lehmer-Schur process.

Department for Numerical Mathematics and Computing
Eötvös Loránd University
Budapest, Hungary

