Roots of two transcendental equations as functions of a continuous real parameter

Authors:
Robert L. Pexton and Arno D. Steiger

Journal:
Math. Comp. **32** (1978), 511-518

MSC:
Primary 65H10

DOI:
https://doi.org/10.1090/S0025-5718-1978-0488704-2

MathSciNet review:
0488704

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The roots, and , of the transcendental equations and

*l*, the smallest -root decreases monotonically as increases in (0, 1), tending towards as approaches unity. For all the other -roots have a minimum value equal to .

**[1]**ROBERT L. PEXTON & ARNO D. STEIGER, "Roots of two transcendental equations involving spherical Bessel functions,"*Math. Comp.*, v. 31, 1977, pp. 752-753. MR**0438662 (55:11570)****[2]**M. ABRAMOWITZ & I. A. STEGUN,*Handbook of Mathematical Functions*, National Bureau of Standards Applied Mathematics Series No. 55, U. S. Government Printing Office, Washington, D. C., 1965.

Retrieve articles in *Mathematics of Computation*
with MSC:
65H10

Retrieve articles in all journals with MSC: 65H10

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0488704-2

Keywords:
Roots of transcendental equations,
spherical Bessel functions,
electromagnetic cavity resonators

Article copyright:
© Copyright 1978
American Mathematical Society