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The Irregular Primes to 125000

By Samuel S. Wagstaff, Jr.

Abstract.   We have determined the irregular primes below 12 5000 and tabulated

their distribution.   Two primes of index five of irregularity were found, namely

78233 and 94693.   Fermat's Last Theorem has been verified for all exponents up to

125000.   We computed the cyclotomic invariants u     \     v , and found that u„ = 0

for all p < 12 5000.   The complete factorizations of the numerators of the Bernoulli

numbers B2k for 2k « 60 and of the Euler numbers E2k for 2k < 42 are given.

1. Introduction.   A pair (p, 2k) is called irregular if the prime p divides the

numerator of the Bernoulli number B2k and 2k is an even integer between 1 and p - 2.

We use the even index notation for the Bernoulli numbers.  The index of irregularity

of a prime p is the number of 2&'s for which (p, 2k) is irregular. The prime p is called

regular when this index vanishes and irregular otherwise.   Regularity plays an impor-

tant role in proving Fermat's "Last Theorem" for the exponent p, as will be explained

in Section 4.  We have verified that Fermat's conjecture is correct for all exponents up

to 125000.

Two tables of irregular prime pairs and other information were deposited by the

author in the UMT files.  They cover the ranges p < 100000 and 100000 < p <

125000, and extend Johnson's table [10] of 1975 which gives practically the same in-

formation for p < 30000.   Our most exciting result was the discovery of two primes

of index 5 of irregularity, namely 78233 and 94693.   Selfridge andPollack [16] found

two primes of index 4 below 25000; we found 14 more of them.  Table 1 gives the

known primes of index 4 and 5.  No primes of index greater than 5 were discovered.

To Johnson's historical summary of work on irregular primes in [10] we add

that in 1976, Hideo Wada [20] found the irregular pairs with p < 32768.   His work

agrees completely with Johnson's results and ours to that limit.

In Section 2, we tell how the irregular pairs were found.  The next section

describes the distribution of the pairs.  The connection with Fermat's "Last Theorem"

and the Iwasawa invariants is discussed in Section 4 and Section 5.   Section 6 presents

work of Selfridge, Wunderlich and the author in factoring the first few Bernoulli and

Euler numbers.   The last section deals with computational details.

2. Determination of the Irregular Pairs. The congruences listed below were

used in finding the irregular pairs. Let c(x, y, z) = xp~2k + yp~2k - zp~2k - 1.

Then, at least for primes p > 8 and 2 < 2k < p - 3, we have
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(1) c(3,4, 6)B2k/4k =       £       s2k-x    (modp),

p/6<s<p/4

(2) c(2, 3,4)B2k/4k =       £       s2k-x    (modp),

p/4<s<p/3

(3) c(4,5,8)52k/4fc=       Z       s2*"^ Z s2fc-'    (modp),
p/S<s<p/S 3p/8<s<2p/5

c(2,5,6)B2k/4k = (22k-x +1)      Z       52ft-1-22fc-1        £ s2*"1

(4) p/6<i<p/5 3p/10<s<p/3

(mod p),

(5) (22*"1 + 32*"1 +62*-1-l)Z?2ÄM=      I     (p-os)2*"1    (modp2).

0<i<p/6

A proof of (4) may be found in [19, p. 574], while (5) is due to E. Lehmer [12] ;

the first three are well-known corollaries of Voronoi's congruence.   Note that the

sums in (1) and (2) have about p/12 terms each, while those in (3) and (4) have a

total of about p/10 and p/15 terms, respectively.

In the early stages of this work (p from 30000 to about 46000) we began by

computing the sum in (1).   If it vanished (mod p), we evaluated c(3, 4, 6).   If this

coefficient was nonzero (mod p), we had shown that (p, 2k) was irregular.   Otherwise,

we computed the coefficients in (2) and (3) to seek a definitive test for regularity.

In case both coefficients vanished we used (5), which was always decisive.

When we learned of (4) from Johnson, we modified the program to use it first.

If it did not decide the regularity of the pair, then we tried the other four congruences

in the order shown.   This procedure was used for 46000 < p < 125000.

It is remarkable that for any irregular pair (p, 2k) with p < 125000, at most

one of the coefficients in congruences (1)—(4) vanishes (mod p), so that any two of

them are sufficient to prove the irregularity of (p, 2k).   Furthermore, the regularity

of any regular pair (p, 2k) with 30000 < p < 125000 can be proved using only the

five congruences.  The other congruences of E. Lehmer [12]   were not needed.

It is clear that congruences like (1) to (4) with fewer terms in the sums would

provide a swifter test for regularity.   At the beginning of this work we searched for

congruences like (1) to (3) with sums taken over as many as four intervals on s

whose endpoints were integer multiples of \/n with n < 120, as well as some larger

n, but found nothing better than (1) and (2).  We did not try multiplying the sums

by coefficients and thus did not discover (4).  Perhaps one could prove that no con-

gruence of the form

c(p - 2k)B2k/4k = X        s2k~x +■■■+ £        s2k~x    (mod p),

ap/n<s<bp/n ep/n<s<fp/n

with 0 < a < ¿> < • ■ ■ <e <f<n, which holds for 2 < 2k < p - 3 and all suffi-

ciently large primes p, can have fewer than a total of about p/12 terms in the sums.
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Table 1

Irregular primes of index > 4

Values of 2k for which p divides B

12613

15737

43189

56263

72337

76289

77783

78233

84067

94693

102559

108179

109789

109843

109891

115727

115901

120557

308

6352

9454

10770

2346

11860

5590

10400

16322

11636

6076

9344

10734

16464

36552

36360

33582

42760

502

7454

14464

21958

15858

25284

52114

32084

43722

54754

50092

15048

44536

25396

56682

71962

68462

93110

9400

12486

26380

52530

44354

26406

52246

46620

44246

76326

54402

56432

44836

27844

69590

101956

90922

95380

2k

10536

13078

35578

55200

68030

72266

73092

47364

44794

80650

66162

78964

105520

84202

103212

112830

95722

101758

64628

84726

Two series of programs were run to determine the irregular pairs.   The first im-

plemented the first four congruences.   It printed and punched on cards the pairs

(p, 2k) which it could not prove regular.   A second program decided the regularity

of each pair by evaluating the four c(x, y, z)'s and then using (5) if necessary.   Many

pairs of the form (p, (p ± l)/2) were punched by the first program, but all of these

were found to be regular by the second program.   For p = 3 (mod 4), it follows

from Voronoi's congruence that (p, (p + l)/2) is regular.   When p = 1 (mod 4), how-

ever, the question of whether (p, (p - l)/2) can be irregular is related to an important

question about the fundamental unit in Q(Vp)-  (See [1] and the references there.)

Apparently, the question is still unsettled, but we note that (p, (p - l)/2) is regular

for p < 125000.   Occasionally, an irregular pair (p, 2k) satisfies p = ± 1 (mod 2k).

We found that among the irregular pairs in the range p < 125000 we havep = 1 (mod

2k) exactly for the pairs (3617,16), (5479,1826), (43867,18) and (90247,6942);

while p=-l (mod 2k) for (131,22), (593,22), (9433,178), (9539,1060) and

(60353,6706).
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3.   The Regularities of the Irregular Primes.   C. L. Siegel [18] gave a heuristic

argument showing that the ratio of the number of irregular primes to regular

primes below a given limit tends to e1'2 - 1 = 0.6487. ...   His assumption was that

the numerators of the B2k are uniformly distributed modulo q for all odd primes q.

As Johnson remarked [10], the same hypothesis predicts that the index of irregular-

ity of primes satisfies a Poisson distribution with mean 1/2.  This means that the

fraction of primes below a given limit with index s of irregularity should be approxi-

mately e~xl2/s\2s.  Wooldridge [21] has given the details of this heuristic reasoning

(independently of Johnson).   For x > 0 let ~ns(x) denote the number of primes not

exceeding x with index s of irregularity.   Let 7r(x) be the number of odd primes be-

low x and us(x) = Tts(x)/-n(x).   In the table below we give tts(x) and us(x) for x =

125000, and 0 < s < 5.   The column headed "Poisson" gives the heuristic limiting

values.   There are 11733 odd primes below 125000.

s irs(x) us(x) Poisson

0 7128   .60752   .60653

1 3559   .30333   .30327

2 875   .07458   .07582

3 153   .01304   .01264

4 16   .00136   .00158

5 2   .00017   .00016

The data support the hypothesis very well, especially since a change of 1 in

it(x) (to include 2 or discard 3, say) would alter the fourth significant figure of us(x),

and a change of 1 in ns(x) would alter the fourth decimal place of us(x).   For x =

125000 the computed fractions us(x) agree with the Poisson values to within 1 in the

third decimal place.

For each multiple x of 1000 to 125000 we used our data to compute the \2

statistic as in [10] for the irregular primes below x. It fluctuated usually between

0.1 and 1.0 and had the value 0.29 at x = 125000.   It was 0.03 at x = 8000.

There are 1473 twin prime pairs below 125000. According to Siegel's heuristic

reasoning, about 1473(1 - e-1'2)2 or 228 of these should have both primes irregular.

In fact, there are 207 such pairs below 125000.

It has been conjectured, but never proved, that there are primes of arbitrarily

high index of irregularity.   One might guess that the first prime p of index s would

be one for which ir(p)e~xl2/s\2s is approximately 1.  This prediction is nearly correct

for s = 3 and s = 5, while the least primes of index 1, 2, and 4 are more than twice

as large as would be expected.  The first primes of index 1, 2, 3, 4, 5 are 37, 157,

491, 12613, and 78233, respectively.  The first prime of index 6 is expected near

1000000.   Compare these results with those for f-irregular primes [4], which have a

similar theory.

Another conjecture is that the irregular primes are distributed uniformly among

the possible residue classes to every modulus.   The best theorem in this direction is
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due to Metsänkylä [13] :   For m ~> 3 there are infinitely many irregular primes out-

side of each subgroup of the group of reduced residue classes modulo m.  (See also

[23] and [7].)  In particular, there are infinitely many irregular primes.  Whether

there are infinitely many regular primes is unknown.  Johnson [10] found that the

irregular primes below 30000 are distributed quite evenly among the reduced residue

classes of various moduli.  Wooldridge [21] tabulated the distribution of irregular

primes below 30000 in residue classes modulo m for 3 < m < 36.  We extended his

count to 125000 and added the first three irregular primes, 37, 59, and 67 as moduli.

The results strongly suggest that the irregular primes are asymptotically distributed

equally among the <p(m) reduced residue classes modulo m for every m.  We give the

data for m = 3, 4, and 5 below.  The heuristic ratio of irregular primes to odd primes

is 1 - e_1/2 = .39347.   Similar results were obtained when the primes were counted

with multiplicity equal to the index of irregularity.

m     Residue Irregular primes Odd Primes Ratio
Class to 125000 to 125000

3 1 2282 5842 .3906
2 2323 5890 .3944

1 2283 5838 .3911

3 2322 5895      .3939

1 1114 2928 .3805

2 1193 2942 .4055

3 1149 2947 .3899

4 1149 2915 .3942

Wooldridge [21] studied the distribution of the numbers 2k/p for which (p, 2k)

is an irregular pair with p < 30000.  The data led to his conjecture that these num-

bers have a uniform distribution in the unit interval (0, 1).  The additional data for

all p < 125000 further support this conjecture.   The mean of these 5842 fractions

is .4983 and their standard deviation is .2898.  The theoretical standard deviation for

the uniform distribution on (0, 1) is \/\/\2 = .2887.  When they are arranged in

increasing order in (0, 1) the largest gap between consecutive fractions is .001492,

and the least gap is .0000000056.

The largest known block of consecutive primes which are all regular is the set

of 27 primes beginning with 17881.  The largest known block of irregular primes

contains 11 primes, the first being 8597.

4.  The Proof of Fermat's "Last Theorem" to 125000.  Kummer proved that

Fermat's "Last Theorem" (FLT) holds for all regular prime exponents.  We have

verified FLT for each irregular prime exponent below 125000 by using this criterion

of Van diver [11] :

Theorem.   Let p be an irregular prime.  Suppose P = rp + 1 is a prime less

than p(p - 1).  Let t be a positive integer such that f ^ 1 (mod P). For each ir-

regular pair (p, 2k) let
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Q2k = rrd'2U(trb-i)bP~1~2k,

6=1

where m = (p - l)/2 and d = lZ^Lxjp~2k.  If Q2k 4 1 (mod P) for each irregular

pair (p, 2k), then FLT holds for the exponent p.

Thus, irregular pairs may be considered as obstructions to proving FLT, which

are removable if Qr2k ̂  1 (mod P) holds.

For every p, the choices r = 2 and the least possible prime P always led to a

successful application of the criterion.  The value of P was frequently about p log p,

as one would expect, and r was always much smaller than p.  The tables deposited

in the UMT files give P, r, d (mod P - 1), Q2k (mod P), and Qr2k (mod P) for each

irregular pair.   Our values of Q2k differ from those in [11] because we computed d

modulo P - 1 rather than modulo p.   Since Q2k is never 1 modulo P in our table,

Vandiver's theorem proves FLT for all exponents below 125000.

There are several simple conditions which imply the first case of FLT:   For

some small odd positive m > 2, if (p, p - m) is not an irregular pair, then the equation xp

+ yp = zp has no nontrivial solution with p relatively prime to xyz.  The odd m, with

2 < m < 30, for which an irregular pair (p, p - m) is known to exist are 3, 5, 9, 11,

15, 17, 19, 21, 29.   Those who would prove the first case of FLT in general by show-

ing that for some particular m, (p, p - m) is never irregular, should not select one of

these values of m.

5. Computation of the Iwasawa Invariants.   For an odd prime p and n > 0,

let pe("^ be the highest power of p which divides the class number of the cyclotomic

field of p" + 1st roots of unity over the rationals.   Iwasawa [5] showed that e(n) =

\ n + p pn + up for all sufficiently large integers n, where the integers \ , p , vp

depend only on p.

The tables we deposited in the UMT file extend to 125000 the tables of John-

son [8] -[10] and Iwasawa and Sims [6].   For each irregular pair, we give the numbers

aQ, ax, and t of [9], the numbers a2 and bx defined in [6] and [10] and the values

of "terms" and "sum" of [8].   All the results concerning Bernoulli numbers, FLT,

and the Iwasawa invariants which are stated in these four papers and in [22] hold true

to 125000, for example, p   = 0 while A   and v   each equal the index of irregularity

of p.

6. Factorization of Some Bernoulli and Euler Numbers.   As a result of the

search for irregular primes described in Section 2, 5842 prime divisors p > 2k + 3

axe now known for the numerators P2k of 5301 different Bernoulli numbers B2k.

J. C. Adams' theorem and Rummer's congruences provide several thousand more

prime divisors p of P2k with p < 2k + 3 < 125000.   These results together give all

prime factors p < 125000 of P2k with 2k < 125000.  The only other prime divisors

of Bernoulli numerators which we know are those of P2k with 2k < 60, which were

factored completely by Selfridge and Wunderlich [17].  They used the Morrison-

Brillhart [14] method for factoring and the Proth-Lehmer theorem and their "com-

bined" theorem to prove primality of large cofactors.  With their kind permission we

include the factorizations, which have never been published, as Table 2.   The numer-
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Table 2

Prime factorization of Bernoulli numerators

2k    Prime factors of P.,
2k

20 283.617

22 11.131.593

24 103.2294797

26 13.657931

28 7.9349.362903

30 5.1721.1001259881

32 37.683.305065927

34 17.151628697551

36 26315271553053477373

38 19.154210205991661

40 137616929.1897170067619

42 1520097643918070802691

44 11.59.8089.2947939.1798482437

46 23.383799511.67568238839737

48 653.56039.153289748932447906241

50 5.5.417202699.47464429777438199

52 13.577.58741.401029177.4534045619429

54 39409. 660183281.1120412849144121779

56 7.113161.163979.19088082706840550550313

58 29.67.186707.6235242049.37349583369104129

60 2003.5549927.109317926249509865773025015237911

ators before P20 axe either prime or unity, and so are omitted.  Table 2 is the first

extensive one of its kind, although others have factored the first few.   M. Ohm [15]

reported on an early attempt to factor some Bernoulli numerators.  J. Bertrand [2]

has factored them as far as P34.

We decided to prepare a factor table of the closely related Euler numbers E2k

at the same time.  (See Ernvall and Metsänkylä [4].)  We found the small prime fac-

tors in Table 3, while Selfridge and Wunderlich determined the large ones.  The Euler

numbers before E% are prime or unity.   Both the Bernoulli numerators and the Euler

numbers may be found in unfactored form in [3].

7.  General Details of the Computations.   The search for the irregular primes

consumed about 90% of the computer time used in this project, which was done over

two years.  The first program of Section 2 had a running time proportional to p   and

took about 80 minutes per prime on an IBM 360/75 for primes near 125000. The sec-

ond program described in Section 2 took hardly any time at all. A third program proved

FLT and a fourth one found the Iwasawa invariants.
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Table 3

Prime factorization of Euler numbers

2k    Prime factors of E„,
2k

8 5.277

10 19.2659

12 5.13.43.967

14 47.4241723

16 5.17.228135437

18 79.349.87224971

20 5.5.41737.354957173

22 31.1567103.1427513357

24 5.13.2137.111691689741601

26 67.61001082228255580483

28 5.19.29.71.30211.2717447.77980901

30 15669721.28178159218598921101

32 5.17.930157.42737921.52536026741617

34 4153.8429689.2305820097576334676593

36 5.13.37.9257.73026287.25355088490684770871

38 23489580527043108252017828576198947741

40 5.5.41.763601.52778129.359513962188687126618793

42 137.5563.13599529127564174819549339030619651971

Four IBM computers at the University of Illinois were used in the project. Most

jobs were run during vacations and on weekends. The first program was written entirely

in 360 assembler language. The other three had FORTRAN main programs and one or

more assembler subroutines.

All of the jobs for the primes between 107000 and 108000 were repeated because

we suspected (wrongly) that the computer which did them the first time might have had

memory read errors. The first program for about another 100 primes was also run twice

for a variety of reasons: output misplaced and later found, only printed or punched out-

put was obtained, etc. In every case when we got legible output for two runs for the

same prime, the results were identical.

The author thanks the staff of the Computing Services Office for their assistance

and tolerance, and the Research Board of the University of Illinois for granting him so

much computer time. He thanks W. Johnson for some helpful conversations and corre-

spondence. He is grateful to the referee for uncovering several oversights in the original

manuscript.
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