The irregular primes to

Author:
Samuel S. Wagstaff

Journal:
Math. Comp. **32** (1978), 583-591

MSC:
Primary 10A40; Secondary 10B15, 12A35

DOI:
https://doi.org/10.1090/S0025-5718-1978-0491465-4

MathSciNet review:
0491465

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We have determined the irregular primes below 125000 and tabulated their distribution. Two primes of index five of irregularity were found, namely 78233 and 94693. Fermat's Last Theorem has been verified for all exponents up to 125000. We computed the cyclotomic invariants , , , and found that for all . The complete factorizations of the numerators of the Bernoulli numbers for and of the Euler numbers for are given.

**[1]**N. C. ANKENY & S. CHOWLA, "A further note on the class number of real quadratic fields,"*Acta Arith.*, v. 7, 1962, pp. 271-272. MR**0137697 (25:1147)****[2]**J. BERTRAND, Personal communication.**[3]**H. T. DAVIS,*Tables of the Mathematical Functions*, v. II, The Principia Press, San Antonio, 1935.**[4]**R. ERNVALL & T. METSÄNKYLÄ, "Cyclotomic invariants and*E*-irregular primes,"*Math. Comp.*, v. 32, 1978, pp. later. MR**482273 (80c:12004a)****[5]**K. IWASAWA, "On -extensions of algebraic number fields,"*Bull. Amer. Math. Soc.*, v. 65, 1959, pp. 183-226. MR**23**#A1630. MR**0124316 (23:A1630)****[6]**K. IWASAWA & C. C. SIMS, "Computation of invariants in the theory of cyclotomic fields,"*J. Math. Soc. Japan*, v. 18, 1966, pp. 86-96. MR**34**#2560. MR**0202700 (34:2560)****[7]**J. JOHNSEN, "On the distribution of irregular primes,"*J. Number Theory*, v. 8, 1976, pp. 434-437. MR**0432564 (55:5552)****[8]**W. JOHNSON, "On the vanishing of the Iwasawa invariant for ,"*Math. Comp.*, v. 27, 1973, pp. 387-396. MR**52**#5621. MR**0384748 (52:5621)****[9]**W. JOHNSON, "Irregular prime divisors of the Bernoulli numbers,"*Math. Comp.*, v. 28, 1974, pp. 653-657. MR**50**#229. MR**0347727 (50:229)****[10]**W. JOHNSON, "Irregular primes and cyclotomic invariants,"*Math. Comp.*, v. 29, 1975, pp. 113-120. MR**51**#12781. MR**0376606 (51:12781)****[11]**D. H. LEHMER, E. LEHMER & H. S. VANDIVER, "An application of high-speed computing to Fermat's last theorem,"*Proc. Nat. Acad. Sci. U.S.A.*, v. 40, 1954, pp. 25-33. MR**15**, 778. MR**0061128 (15:778f)****[12]**E. LEHMER, "On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson,"*Ann. of Math.*, v. 39, 1938, pp. 350-360. MR**1503412****[13]**T. METSANKYLA, "Distribution of irregular prime numbers,"*J. Reine Angew. Math.*, v. 282, 1976, pp. 126-130. MR**0399014 (53:2865)****[14]**M. A. MORRISON & J. BRILLHART, "A method of factoring and the factorization of ,"*Math. Comp.*, v. 29, 1975, pp. 183-205. MR**0371800 (51:8017)****[15]**M. OHM, "Etwas über die Bernoullischen Zahlen,"*J. Reine Angew. Math.*, v. 20, 1840, pp. 11-12.**[16]**J. L. SELFRIDGE & B. W. POLLACK, "Fermat's last theorem is true for any exponent up to 25,000,"*Notices Amer. Math. Soc.*, v. 11, 1964, p. 97. Abstract #608-138.**[17]**J. L. SELFRIDGE & M. WUNDERLICH, Personal communication.**[18]**C. L. SIEGEL, "Zu zwei Bemerkungen Kummers,"*Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II*, Nr. 6, 1964, pp. 51-57. MR**29**#1198; Also in*Gesammelte Abhandlungen*, v. III, Springer-Verlag, Berlin and New York, 1966, pp. 436-442. MR**0163899 (29:1198)****[19]**H. S. VANDIVER, "On Bernoulli's numbers and Fermat's last theorem,"*Duke Math. J.*, v. 3, 1937, pp. 569-584. MR**1546011****[20]**H. WADA, Personal communication.**[21]**K. WOOLDRIDGE,*Some Results in Arithmetical Functions Similar to Euler's Phi-Function*, Ph.D. thesis, University of Illinois at Urbana-Champaign, 1975.**[22]**I. YAMAGUCHI, "On a Bernoulli numbers conjecture,"*J. Reine Angew. Math.*, v. 288, 1976, pp. 168-175. MR**0424669 (54:12628)****[23]**H. YOKOI, "On the distribution of irregular primes,"*J. Number Theory*, v. 7, 1975, pp. 71-76. MR**0364130 (51:385)**

Retrieve articles in *Mathematics of Computation*
with MSC:
10A40,
10B15,
12A35

Retrieve articles in all journals with MSC: 10A40, 10B15, 12A35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0491465-4

Keywords:
Bernoulli numbers,
Euler numbers,
irregular primes,
Fermat's Last Theorem,
cyclotomic invariants

Article copyright:
© Copyright 1978
American Mathematical Society