The method of envelopes

Authors:
W. L. Miranker and M. van Veldhuizen

Journal:
Math. Comp. **32** (1978), 453-496

MSC:
Primary 65L05; Secondary 34E15

DOI:
https://doi.org/10.1090/S0025-5718-1978-0494952-8

MathSciNet review:
0494952

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The differential equation

*t*and a slow time . We redevelop this asymptotic theory in such a form that the approximation consists of a series of simple functions of , called carriers. (This series may be thought of as a Fourier series.) The coefficients of the terms of this series are functions of

*t*. They are called envelopes and they modulate the carriers. Our computational method consists of determining numerical approximations to a finite collection of these envelopes. One of the principal merits of our method is its accuracy for the nonlinear problem.

**[1]**Abraham Ziv and Vardy Amdursky,*On the numerical solution of stiff linear systems of the oscillatory type*, SIAM J. Appl. Math.**33**(1977), no. 4, 593–606. MR**0455417**, https://doi.org/10.1137/0133042**[2]**Owe Axelsson,*A class of 𝐴-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**9**(1969), 185–199. MR**0255059****[3]**E. W. Cheney,*Introduction to approximation theory*, McGraw-Hill Book Co., New York-Toronto, Ont.-London, 1966. MR**0222517****[4]**P. G. Ciarlet and P.-A. Raviart,*General Lagrange and Hermite interpolation in 𝑅ⁿ with applications to finite element methods*, Arch. Rational Mech. Anal.**46**(1972), 177–199. MR**0336957**, https://doi.org/10.1007/BF00252458**[5]**Germund Dahlquist,*Convergence and stability in the numerical integration of ordinary differential equations*, Math. Scand.**4**(1956), 33–53. MR**0080998**, https://doi.org/10.7146/math.scand.a-10454**[6]**Walter Gautschi,*Numerical integration of ordinary differential equations based on trigonometric polynomials*, Numer. Math.**3**(1961), 381–397. MR**0138200**, https://doi.org/10.1007/BF01386037**[7]**C. W. Gear,*The automatic integration of stiff ordinary differential equations.*, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 187–193. MR**0260180****[8]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[9]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[10]**Willard L. Miranker and Frank Hoppensteadt,*Numerical methods for stiff systems of differential equations related with transistors, tunnel diodes, etc*, Computing methods in applied sciences and engineering (Proc. Internat. Sympos., Versailles, 1973) Springer, Berlin, 1974, pp. 416–432. Lecture Notes in Comput. Sci., Vol. 10. MR**0436601****[11]**F. C. Hoppensteadt and Willard L. Miranker,*Differential equations having rapidly changing solutions: analytic methods for weakly nonlinear systems*, J. Differential Equations**22**(1976), no. 2, 237–249. MR**0422791**, https://doi.org/10.1016/0022-0396(76)90026-7**[12]**Ilkka Karasalo,*Minimum norm solutions of single stiff linear analytic differential equations*, J. Math. Anal. Appl.**51**(1975), no. 3, 516–538. MR**0377149**, https://doi.org/10.1016/0022-247X(75)90104-3**[13]**H. B. Keller,*Numerical solution of boundary value problems for ordinary differential equations: survey and some recent results on difference methods*, Numerical solutions of boundary value problems for ordinary differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1974), Academic Press, New York, 1975, pp. 27–88. MR**0451742****[14]**J. D. Lambert,*Computational methods in ordinary differential equations*, John Wiley & Sons, London-New York-Sydney, 1973. Introductory Mathematics for Scientists and Engineers. MR**0423815****[15]**W. L. Miranker and G. Wahba,*An averaging method for the stiff highly oscillatory problem*, Math. Comp.**30**(1976), no. 135, 383–399. MR**0423817**, https://doi.org/10.1090/S0025-5718-1976-0423817-0**[16]**W. L. Miranker, M. van Veldhuizen, and G. Wahba,*Two methods for the stiff highly oscillatory problem*, Topics in numerical analysis, III (Proc. Roy. Irish Acad. Conf., Trinity Coll., Dublin, 1976) Academic Press, London, 1977, pp. 257–273. MR**0657229****[17]**Theodore J. Rivlin,*The Chebyshev polynomials*, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1974. Pure and Applied Mathematics. MR**0450850****[18]**Robert D. Russell,*Collocation for systems of boundary value problems*, Numer. Math.**23**(1974), 119–133. MR**0416074**, https://doi.org/10.1007/BF01459946**[19]**Arnold Schönhage,*Approximationstheorie*, Walter de Gruyter & Co., Berlin-New York, 1971 (German). MR**0277960****[20]**Arthur David Snider and Gary Charles Fleming,*Approximation by aliasing with application to “Certaine” stiff differential equations*, Math. Comp.**28**(1974), 465–473. MR**0343637**, https://doi.org/10.1090/S0025-5718-1974-0343637-3**[21]**E. L. Stiefel and G. Scheifele,*Linear and regular celestial mechanics. Perturbed two-body motion, numerical methods, canonical theory*, Springer-Verlag, New York-Heidelberg, 1971. Die Grundlehren der mathematischen Wissenschaften, Band 174. MR**0445967****[22]**Minoru Urabe,*Galerkin’s prodcedure for nonlinear periodic systems*, Arch. Rational Mech. Anal.**20**(1965), 120–152. MR**0182771**, https://doi.org/10.1007/BF00284614**[23]**Richard Weiss,*The application of implicit Runge-Kutta and collection methods to boundary-value problems*, Math. Comp.**28**(1974), 449–464. MR**0341881**, https://doi.org/10.1090/S0025-5718-1974-0341881-2

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05,
34E15

Retrieve articles in all journals with MSC: 65L05, 34E15

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0494952-8

Article copyright:
© Copyright 1978
American Mathematical Society