On the convergence of difference approximations to nonlinear contraction semigroups in Hilbert spaces

Author:
Olavi Nevanlinna

Journal:
Math. Comp. **32** (1978), 321-334

MSC:
Primary 47H15; Secondary 65J05

DOI:
https://doi.org/10.1090/S0025-5718-1978-0513203-9

MathSciNet review:
0513203

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Convergence properties of the difference schemes (S)

*A*is a nonlinear, maximally monotone operator in a real Hilbert space. It is shown, in particular, that if the scheme (S) is consistent and stable for the test equation for , where

*K*is a compact subset of the right half-plane, then (S) is convergent as , with suitable initial values, for (E), on compact intervals [0,

*T*]. Moreover, the convergence is uniform on the half-axis , if the solution tends strongly to a constant as . We also show that under weaker stability conditions one can construct conditionally convergent methods.

**[1]**H. Brezis and A. Pazy,*Semigroups of nonlinear contractions on convex sets*, J. Functional Analysis**6**(1970), 237–281. MR**0448185****[3]**Ronald E. Bruck Jr.,*Asymptotic convergence of nonlinear contraction semigroups in Hilbert space*, J. Funct. Anal.**18**(1975), 15–26. MR**0377609**, https://doi.org/10.1016/0022-1236(75)90027-0**[4]**M. G. Crandall and T. M. Liggett,*Generation of semi-groups of nonlinear transformations on general Banach spaces*, Amer. J. Math.**93**(1971), 265–298. MR**0287357**, https://doi.org/10.2307/2373376**[5]**Germund G. Dahlquist,*A special stability problem for linear multistep methods*, Nordisk Tidskr. Informations-Behandling**3**(1963), 27–43. MR**0170477****[6]**Germund Dahlquist,*Error analysis for a class of methods for stiff non-linear initial value problems*, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Springer, Berlin, 1976, pp. 60–72. Lecture Notes in Math., Vol. 506. MR**0448898****[7]**G. DAHLQUIST,*On the Relation of G-Stability to Other Stability Concepts for Linear Multistep Methods*, Report TRITA-NA-7618, Dept. of Comput. Sci., Royal Inst. of Tech., 1976.**[8]**J. Kačur,*The Rothe method and nonlinear parabolic equations of arbitrary order*, Theory of nonlinear operators (Proc. Summer School, Neuchâtel, 1972), Akademie-Verlag, Berlin, 1974, pp. 125–131. Schr. Zentralinst. Math. Mech. Akad. Wiss. DDR, Heft 20. MR**0364880****[9]**Nobuyuki Kenmochi and Sinnosuke Oharu,*Difference approximation of nonlinear evolution equations and semigroups of nonlinear operators*, Publ. Res. Inst. Math. Sci.**10**(1974/75), no. 1, 147–207. MR**0388185**, https://doi.org/10.2977/prims/1195192177**[10]**Olavi Nevanlinna,*On error bounds for 𝐺-stable methods*, Nordisk Tidskr. Informationsbehandling (BIT)**16**(1976), no. 1, 79–84. MR**0488767****[11]**O. NEVANLINNA,*On Multistep Methods for Nonlinear Initial Value Problems with an Application to Minimization of Convex Functionals*, Report HTKK-MAT-A76, Inst. of Math., Helsinki Univ. of Tech., 1976.**[12]**Olavi Nevanlinna,*On the numerical integration of nonlinear initial value problems by linear multistep methods*, Nordisk Tidskr. Informationsbehandling (BIT)**17**(1977), no. 1, 58–71. MR**0494953****[13]**Tadayasu Takahashi,*Convergence of difference approximation of nonlinear evolution equations and generation of semigroups*, J. Math. Soc. Japan**28**(1976), no. 1, 96–113. MR**0399978**, https://doi.org/10.2969/jmsj/02810096

Retrieve articles in *Mathematics of Computation*
with MSC:
47H15,
65J05

Retrieve articles in all journals with MSC: 47H15, 65J05

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0513203-9

Article copyright:
© Copyright 1978
American Mathematical Society