Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS
   
Mobile Device Pairing
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)

 

On the convergence of difference approximations to nonlinear contraction semigroups in Hilbert spaces


Author: Olavi Nevanlinna
Journal: Math. Comp. 32 (1978), 321-334
MSC: Primary 47H15; Secondary 65J05
MathSciNet review: 0513203
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Convergence properties of the difference schemes (S)

$\displaystyle {h^{ - 1}}\sum\limits_{j = 0}^k {{\alpha _j}{u_{n + j}}} + \sum\limits_{j = 0}^k {{\beta _j}A{u_{n + j}}} = 0,\quad n \geqslant 0,$

, for evolution equations (E)

$\displaystyle \frac{{du(t)}}{{dt}} + Au(t) = 0,\quad t \geqslant 0;\quad u(0) = {u_0} \in \overline {D(A)} $

are studied. Here A is a nonlinear, maximally monotone operator in a real Hilbert space. It is shown, in particular, that if the scheme (S) is consistent and stable for the test equation $ x\prime = \lambda x$ for $ \lambda \in {\text{C}} - K$, where K is a compact subset of the right half-plane, then (S) is convergent as $ h \downarrow 0$, with suitable initial values, for (E), on compact intervals [0, T]. Moreover, the convergence is uniform on the half-axis $ t \geqslant 0$, if the solution $ u(t)$ tends strongly to a constant as $ t \to \infty $. We also show that under weaker stability conditions one can construct conditionally convergent methods.

References [Enhancements On Off] (What's this?)

  • [1] H. Brezis and A. Pazy, Semigroups of nonlinear contractions on convex sets, J. Functional Analysis 6 (1970), 237–281. MR 0448185 (56 #6494)
  • [3] Ronald E. Bruck Jr., Asymptotic convergence of nonlinear contraction semigroups in Hilbert space, J. Funct. Anal. 18 (1975), 15–26. MR 0377609 (51 #13780)
  • [4] M. G. Crandall and T. M. Liggett, Generation of semi-groups of nonlinear transformations on general Banach spaces, Amer. J. Math. 93 (1971), 265–298. MR 0287357 (44 #4563)
  • [5] Germund G. Dahlquist, A special stability problem for linear multistep methods, Nordisk Tidskr. Informations-Behandling 3 (1963), 27–43. MR 0170477 (30 #715)
  • [6] Germund Dahlquist, Error analysis for a class of methods for stiff non-linear initial value problems, Numerical analysis (Proc. 6th Biennial Dundee Conf., Univ. Dundee, Dundee, 1975) Springer, Berlin, 1976, pp. 60–72. Lecture Notes in Math., Vol. 506. MR 0448898 (56 #7203)
  • [7] G. DAHLQUIST, On the Relation of G-Stability to Other Stability Concepts for Linear Multistep Methods, Report TRITA-NA-7618, Dept. of Comput. Sci., Royal Inst. of Tech., 1976.
  • [8] J. Kačur, The Rothe method and nonlinear parabolic equations of arbitrary order, Theory of nonlinear operators (Proc. Summer School, Neuchâtel, 1972), Akademie-Verlag, Berlin, 1974, pp. 125–131. Schr. Zentralinst. Math. Mech. Akad. Wiss. DDR, Heft 20. MR 0364880 (51 #1134)
  • [9] Nobuyuki Kenmochi and Sinnosuke Oharu, Difference approximation of nonlinear evolution equations and semigroups of nonlinear operators, Publ. Res. Inst. Math. Sci. 10 (1974/75), no. 1, 147–207. MR 0388185 (52 #9022)
  • [10] Olavi Nevanlinna, On error bounds for 𝐺-stable methods, Nordisk Tidskr. Informationsbehandling (BIT) 16 (1976), no. 1, 79–84. MR 0488767 (58 #8281)
  • [11] O. NEVANLINNA, On Multistep Methods for Nonlinear Initial Value Problems with an Application to Minimization of Convex Functionals, Report HTKK-MAT-A76, Inst. of Math., Helsinki Univ. of Tech., 1976.
  • [12] Olavi Nevanlinna, On the numerical integration of nonlinear initial value problems by linear multistep methods, Nordisk Tidskr. Informationsbehandling (BIT) 17 (1977), no. 1, 58–71. MR 0494953 (58 #13728)
  • [13] Tadayasu Takahashi, Convergence of difference approximation of nonlinear evolution equations and generation of semigroups, J. Math. Soc. Japan 28 (1976), no. 1, 96–113. MR 0399978 (53 #3816)

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 47H15, 65J05

Retrieve articles in all journals with MSC: 47H15, 65J05


Additional Information

DOI: http://dx.doi.org/10.1090/S0025-5718-1978-0513203-9
PII: S 0025-5718(1978)0513203-9
Article copyright: © Copyright 1978 American Mathematical Society