Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

Reviews and Descriptions of Tables and Books


Journal: Math. Comp. 32 (1978), 651-659
DOI: https://doi.org/10.1090/S0025-5718-78-99983-0
Full-text PDF

References | Additional Information

References [Enhancements On Off] (What's this?)

  • [1] S. L. SOBOLEV, Applications of Functional Analysis in Mathematical Physics, Transl. Math. Monographs, Vol. 7, Amer. Math. Soc., Providence, R. I., 1963. MR 0165337 (29:2624)
  • [2] J. L. LIONS & E. MAGENES, Non Homogeneous Boundary Value Problems and Applications, Vol. 1, Springer-Verlag, New York, 1972.
  • [3] J. P. AUBIN, Approximation of Elliptic Boundary-Value Problems, Wiley-Interscience, New York, 1972. MR 0478662 (57:18139)
  • [4] E. L. WACHPRESS, A Rational Finite Element Basis, Academic Press, New York, 1975. MR 0426460 (54:14403)
  • [5] J. NEČAS, Les Méthodes Directes en Théorie des Équations Elliptiques, Masson, Paris 1967.
  • [1] J. LEVINE & R. E. DALTON, "Minimum periods, modulo p, of first-order Bell exponential integers," Math. Comp., v. 16, 1962, pp. 416-423. MR 0148604 (26:6111)
  • [2] H. W. BECKER, "Solution of Problem E 461", Amer. Math. Monthly, v. 48, 1941, pp. 701-703.
  • [1] N. G. W. H. BEEGER, "On a new case of the congruence $ {2^{p - 1}} \equiv 1\;\pmod {p^2}$," Messenger of Math., v. 51, 1922, pp. 149-150. Jbuch 48, 1154.
  • [2] N. G. W. H. BEEGER, "On the congruence $ {2^{p - 1}} \equiv 1\;\pmod {p^2}$ and Fermat's last theorem," Messenger of Math., v. 55, 1925/26, pp. 17-26. Jbuch 51, 127.
  • [3] R. ERNVALL & T. METSÄNKYLÄ, "Cyclotomic invariants and E-irregular primes," Math. Comp., v. 32, 1978, pp. 617-629. MR 482273 (80c:12004a)
  • [4] R. HAUSSNER, "Reste von $ {2^{p - 1}} - 1$ nach dem Teiler $ {p^2}$ für alle Primzahlen bis 10009," Arch. Math. Naturvid., v. 39, 1925, 17 pp. Jbuch 51, 128.
  • [5] A. E. WESTERN & J. C. P. MILLER, Tables of Indices and Primitive Roots, Roy. Soc. Math. Tables, vol. 9, Cambridge Univ. Press, London, 1968. MR 39 #7792. MR 0246488 (39:7792)
  • [1] M. KRAITCHIK, Théorie des Nombres, t. 3, Analyse Diophantine et Applications aux Cuboides Rationnels, Gauthier-Villars, Paris, 1947.
  • [2] M. KRAITCHIK, "Sur les cuboides rationnels," in Proc. Internat. Congr. Math., vol. 2, North-Holland, Amsterdam, 1954, pp. 33-34.
  • [3] M. LAL & W. J. BLUNDON, "Solutions of the Diophantine equations $ {x^2} + {y^2} = {l^2}$, $ {y^2} + {z^2} = {m^2}$, $ {z^2} + {x^2} = {n^2}$," Math. Comp., v. 20, 1966, pp. 144-147. MR 0186623 (32:4082)
  • [4] J. LEECH, "The location of four squares in an arithmetic progression, with some applications," in Computers and Number Theory (A.O.L. Atkin & B. J. Birch, editors), Academic Press, London and New York, 1971, pp. 83-98. MR 0316366 (47:4913)
  • [5] J. LEECH, "The rational cuboid revisited," Amer. Math. Monthly, v. 84, 1977, pp. 518-533. MR 0447106 (56:5421)


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-78-99983-0
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society