On the computation of modified Bessel function ratios

Authors:
Walter Gautschi and Josef Slavik

Journal:
Math. Comp. **32** (1978), 865-875

MSC:
Primary 33A40

DOI:
https://doi.org/10.1090/S0025-5718-1978-0470267-9

MathSciNet review:
0470267

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: A detailed comparison is made between a continued fraction of Gauss, and one of Perron, for the evaluation of ratios of modified Bessel functions , . It will be shown that Perron's continued fraction has remarkable advantages over Gauss' continued fraction, particularly when .

**[1]**D. E. AMOS, S. L. DANIEL & M. K. WESTON, "CDC 6600 subroutines IBESS and JBESS for Bessel functions and ,"*ACM Trans. Math. Software*, v. 3, 1977, pp. 76-92. MR**0433810 (55:6781)****[2]**D. E. AMOS, S. L. DANIEL & M. K. WESTON, "Algorithm 511-CDC 6600 subroutines IBESS and JBESS for Bessel functions and ,"*ACM Trans. Math. Software*, v. 3, 1977, pp. 93-95. MR**0433810 (55:6781)****[3]**W. GAUTSCHI, "Computational aspects of three-term recurrence relations,"*SIAM Rev.*, v. 9, 1967, pp. 24-82. MR**0213062 (35:3927)****[4]**W. GAUTSCHI, "Anomalous convergence of a continued fraction for ratios of Kummer functions,"*Math. Comp.*, v. 31, 1977, pp. 994-999. MR**0442204 (56:590)****[5]**O. PERRON,*Die Lehre von den Kettenbrüchen*, vol. II, 3rd ed., Teubner Verlag, Stuttgart, 1957. MR**0085349 (19:25c)****[6]**H. S. WALL,*Analytic Theory of Continued Fractions*, Van Nostrand, New York, 1948. MR**0025596 (10:32d)**

Retrieve articles in *Mathematics of Computation*
with MSC:
33A40

Retrieve articles in all journals with MSC: 33A40

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0470267-9

Article copyright:
© Copyright 1978
American Mathematical Society