Superconvergence and reduced integration in the finite element method

Author:
Miloš Zlámal

Journal:
Math. Comp. **32** (1978), 663-685

MSC:
Primary 65N30; Secondary 65D30

DOI:
https://doi.org/10.1090/S0025-5718-1978-0495027-4

MathSciNet review:
0495027

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The finite elements considered in this paper are those of the Serendipity family of curved isoparametric elements. There is given a detailed analysis of a superconvergence phenomenon for the gradient of approximate solutions to second order elliptic boundary value problems. An approach is proposed how to use the superconvergence in practical computations.

**[1]**J. BARLOW, "Optimal stress locations in finite element models,"*Internat. J. Numer. Methods.*, v. 10, 1976, pp. 243-251.**[2]**J. H. BRAMBLE & S. R. HILBERT, "Estimation of linear functionals on Sobolev spaces with application to Fourier transforms and spline interpolation,"*SIAM J. Numer. Anal.*, v. 7, 1970, pp. 113-124. MR**0263214 (41:7819)****[3]**J. H. BRAMBLE & S. R. HILBERT, "Bounds for a class of linear functionals with applications to Hermite interpolation,"*Numer. Math.*, v. 16, 1971, pp. 362-369. MR**0290524 (44:7704)****[4]**P. G. CIARLET & P. A. RAVIART, "The combined effect of curved boundaries and numerical integration in isoparametric finite element methods,"*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 409-474. MR**0421108 (54:9113)****[5]**B. M. IRONS & A. RAZZAQUE; "Experience with the patch test for convergence of finite elements,"*The Mathematical Foundations of the Finite Element Method with Applications to Partial Differential Equations*(A. K. Aziz, Editor), Academic Press, New York, 1972, pp. 557-587. MR**0423839 (54:11813)****[6]**J. NEČAS,*Les Méthodes Directes en Théorie des Equations Elliptiques*, Academia, Prague, 1967.**[7]**D. A. VERYARD,*Problems Associated with the Convergence of Isoparametric and Mixoparametric Finite Elements*, M. Sc. Thesis, University of Wales, 1971.**[8]**O. C. ZIENKIEWICZ,*The Finite Element Method in Engineering Science*, McGraw-Hill, London, 1972. MR**0315970 (47:4518)****[9]**M. ZLÁMAL, "Some superconvergence results in the finite element method,"*Mathematical Aspects of Finite Element Methods*, Springer-Verlag, Berlin, Heidelberg, New York, 1977, pp. 351-362. MR**0488863 (58:8365)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
65D30

Retrieve articles in all journals with MSC: 65N30, 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0495027-4

Keywords:
Finite elements

Article copyright:
© Copyright 1978
American Mathematical Society