Remote Access Mathematics of Computation
Green Open Access

Mathematics of Computation

ISSN 1088-6842(online) ISSN 0025-5718(print)

 
 

 

The inverse Sturm-Liouville problem and the Rayleigh-Ritz method


Author: Ole H. Hald
Journal: Math. Comp. 32 (1978), 687-705
MSC: Primary 65L15
DOI: https://doi.org/10.1090/S0025-5718-1978-0501963-2
MathSciNet review: 0501963
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we present an algorithm for solving the inverse Sturm-Liouville problem with symmetric potential and Dirichlet boundary conditions. The algorithm is based on the Rayleigh-Ritz method for calculating the eigenvalues of a two point boundary value problem, and reduces the inverse problem for the differential equation to a nonstandard discrete inverse eigenvalue problem. It is proved that the solution of the discrete problem converges to the solution of the continuous problem. Finally, we establish the stability of the method and give numerical examples.


References [Enhancements On Off] (What's this?)

  • [1] L. ANDERSON, "On the effective determination of the wave operator from given spectral data in the case of a difference equation corresponding to a Sturm-Liouville differential equation," J. Math. Anal. Appl., v. 29, 1970, pp. 467-497. MR 0267780 (42:2682)
  • [2] G. E. BACKUS & J. F. GILBERT, "Numerical applications of a formalism for geophysical inverse problems," Geophys. J. Roy. Astronom. Soc., v. 13, 1967, pp. 247-276.
  • [3] V. BARCILON, "Iterative solution of the inverse Sturm-Liouville problem," J. Mathematical Phys., v. 15, 1974, pp. 287-298. MR 0342069 (49:6815)
  • [4] G. BORG, "Eine Umkehrung der Sturm-Liouvilleschen Eigenwertaufgabe," Acta Math., v. 78, 1946, pp. 1-96. MR 0015185 (7:382d)
  • [5] P. G. CIARLET, M. H. SCHULTZ & R. S. VARGA, "Numerical methods of high-order accuracy for nonlinear boundary value problems. III. Eigenvalue problems," Numer. Math., v. 12, 1968, pp. 120-133. MR 0233517 (38:1838)
  • [6] E. CODDINGTON & N. LEVINSON, Theory of Ordinary Differential Equations, McGraw-Hill, New York, 1955. MR 0069338 (16:1022b)
  • [7] R. COURANT & D. HILBERT, Methods of Mathematical Physics, Vol. 1, Interscience, New York, 1953. MR 0065391 (16:426a)
  • [8] S. FRIEDLAND, "Inverse eigenvalue problems," Linear Algebra and Appl., v. 17, 1977, pp. 15-51. MR 0472861 (57:12550)
  • [9] F. R. GANTMACHER & M. G. KREIN, Oszillationsmatrizen, Oszillationskerne und kleine Schwingungen Mechanischer Systeme, Akademie-Verlag, Berlin, 1960. MR 0114338 (22:5161)
  • [10] I. M. GEL'FAND & B. M. LEVITAN, "On the determination of a differential equation from its spectral function," Amer. Math. Soc. Transl. (2), v. 1, 1955, pp. 253-304. MR 0073805 (17:489c)
  • [11] K. P. HADELER, "Ein Inverses Eigenwertproblem," Linear Algebra and Appl., v. 1, 1968, pp. 83-101. MR 0227189 (37:2774)
  • [12] O. H. HALD, On Discrete and Numerical Inverse Sturm-Liouville Problems, Ph.D. Thesis, New York Univ., New York, N. Y., 1972.
  • [13] O. H. HALD, "The inverse Sturm-Liouville problem with symmetric potentials," Acta. Math. (To appear.) MR 505878 (80a:34022)
  • [14] G. H. HARDY, J. E. LITTLEWOOD & G. PÓLYA, Inequalities, 2nd ed., Cambridge Univ. Press, London, 1952.
  • [15] H. HOCHSTADT, "The inverse Sturm-Liouville problem," Comm. Pure Appl. Math., v. 26, 1973, pp. 715-729. MR 0330607 (48:8944)
  • [16] H. HOCHSTADT, "Well-posed inverse spectral problems," Proc. Nat. Acad. Sci. U.S.A. v. 72, 1975, pp. 2496-2497. MR 0372313 (51:8529)
  • [17] T. KATO, "On the upper and lower bounds of eigenvalues," J. Phys. Soc. Japan, v. 4, 1949, pp. 334-339. MR 0038738 (12:447b)
  • [18] M. G. KREIN, "Solution of the inverse Sturm-Liouville problem," Dokl. Akad. Nauk SSSR (N. S.), v. 76, 1951, pp. 21-24. MR 0039895 (12:613c)
  • [19] M. G. KREIN, "Determination of the density of a non-homogeneous symmetric cord by its frequency spectrum," Dokl. Akad. Nauk SSSR (N. S.), v. 76, 1951, pp. 345-348. MR 0042045 (13:43d)
  • [20] F. LABORDE, "Sur un problème inverse d'un problème de valeurs propres," C. R. Acad. Sci. Paris Ser. A-B. v. 268, 1969, pp. A153-A156. MR 0241441 (39:2781)
  • [21] N. LEVINSON, "The inverse Sturm-Liouville problem," Mat. Tidsskr. B, 1949, pp. 25-30. MR 0032067 (11:248e)
  • [22] B. M. LEVITAN, "On the determination of a Sturm-Liouville equation by two spectra," Amer. Math. Soc. Transl. (2), v. 68, 1968, pp. 1-20. MR 610774 (82h:34024)
  • [23] V. A. MARČENKO, "Concerning the theory of a differential operator of the second order," Dokl. Akad. Nauk SSSR (N. S.), v. 72, 1950, pp. 457-460. MR 0036916 (12:183c)
  • [24] P. MOREL, "Des algorithmes pour le problème inverse des valeurs propres," Linear Algebra and Appl., v. 13, 1976, pp. 251-273. MR 0395187 (52:15985)
  • [25] F. I. NIORDSON, "A method for solving inverse eigenvalue problems," in Recent Progress in Applied Mechanics, The Folke Odquist Volume (B. Broberg, J. Hult & F. Niordson, Editors), Almquist & Wiksell, Stockholm, 1967, pp. 375-382.
  • [26] G. N. de OLIVEIRA, "Note on an inverse characteristic value problem," Numer. Math., v. 15, 1970, pp. 345-347. MR 0266415 (42:1321)
  • [27] G. STRANG & G. J. FIX, An Analysis of the Finite Element Method, Prentice-Hall, Englewood Cliffs, N. J., 1973. MR 0443377 (56:1747)
  • [28] Tables Relating to Mathieu Functions, National Bureau of Standards, Columbia Univ. Press, 1951.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 65L15

Retrieve articles in all journals with MSC: 65L15


Additional Information

DOI: https://doi.org/10.1090/S0025-5718-1978-0501963-2
Article copyright: © Copyright 1978 American Mathematical Society

American Mathematical Society