On the problem

Author:
R. E. Crandall

Journal:
Math. Comp. **32** (1978), 1281-1292

MSC:
Primary 10A99

DOI:
https://doi.org/10.1090/S0025-5718-1978-0480321-3

MathSciNet review:
0480321

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: It is an open conjecture that for any positive odd integer *m* the function

*h*. Here we show that the number of which satisfy the conjecture is at least for a positive constant

*c*. A connection between the validity of the conjecture and the diophantine equation is established. It is shown that if the conjecture fails due to an occurrence , then

*k*is greater than 17985. Finally, an analogous "" problem is settled for certain pairs .

**[1]**J. H. Conway,*Unpredictable iterations*, Proceedings of the Number Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado, Boulder, Colo., 1972, pp. 49–52. MR**0392904****[2]**I. N. HERSTEIN & I. KAPLANSKY,*Matters Mathematical*, 1974.**[3]**C. J. Everett,*Iteration of the number-theoretic function 𝑓(2𝑛)=𝑛, 𝑓(2𝑛+1)=3𝑛+2*, Adv. Math.**25**(1977), no. 1, 42–45. MR**0457344**, https://doi.org/10.1016/0001-8708(77)90087-1**[4]**M. ABRAMOWITZ & I. STEGUN (Editors),*Handbook of Mathematical Functions*, 9th printing, Dover, New York, 1965.**[5]***Zentralblatt für Mathematik*, Band 233, p. 10041.**[6]**Joe Roberts,*Elementary number theory—a problem oriented approach*, MIT Press, Cambridge, Mass.-London, 1977. MR**0498337****[7]**A. Ya. Khinchin,*Continued fractions*, The University of Chicago Press, Chicago, Ill.-London, 1964. MR**0161833****[8]***Pi Mu Epsilon Journal*, v. 5, 1972, pp. 338, 463.**[9]**S. S. PILLAI,*J. Indian Math. Soc.*, v. 19, 1931, pp. 1-11.**[10]**A. HERSCHEFELD,*Bull. Amer. Math. Soc.*, v. 42, 1936, pp. 231-234.

Retrieve articles in *Mathematics of Computation*
with MSC:
10A99

Retrieve articles in all journals with MSC: 10A99

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0480321-3

Keywords:
Algorithm,
diophantine equation

Article copyright:
© Copyright 1978
American Mathematical Society