On the problem
Author:
R. E. Crandall
Journal:
Math. Comp. 32 (1978), 12811292
MSC:
Primary 10A99
MathSciNet review:
0480321
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: It is an open conjecture that for any positive odd integer m the function where is chosen so that is again an odd integer, satisfies for some h. Here we show that the number of which satisfy the conjecture is at least for a positive constant c. A connection between the validity of the conjecture and the diophantine equation is established. It is shown that if the conjecture fails due to an occurrence , then k is greater than 17985. Finally, an analogous "" problem is settled for certain pairs .
 [1]
J.
H. Conway, Unpredictable iterations, Proceedings of the Number
Theory Conference (Univ. Colorado, Boulder, Colo., 1972) Univ. Colorado,
Boulder, Colo., 1972, pp. 49–52. MR 0392904
(52 #13717)
 [2]
I. N. HERSTEIN & I. KAPLANSKY, Matters Mathematical, 1974.
 [3]
C.
J. Everett, Iteration of the numbertheoretic function
𝑓(2𝑛)=𝑛, 𝑓(2𝑛+1)=3𝑛+2,
Adv. Math. 25 (1977), no. 1, 42–45. MR 0457344
(56 #15552)
 [4]
M. ABRAMOWITZ & I. STEGUN (Editors), Handbook of Mathematical Functions, 9th printing, Dover, New York, 1965.
 [5]
Zentralblatt für Mathematik, Band 233, p. 10041.
 [6]
Joe
Roberts, Elementary number theory—a problem oriented
approach, MIT Press, Cambridge, Mass.London, 1977. MR 0498337
(58 #16472)
 [7]
A.
Ya. Khinchin, Continued fractions, The University of Chicago
Press, Chicago, Ill.London, 1964. MR 0161833
(28 #5037)
 [8]
Pi Mu Epsilon Journal, v. 5, 1972, pp. 338, 463.
 [9]
S. S. PILLAI, J. Indian Math. Soc., v. 19, 1931, pp. 111.
 [10]
A. HERSCHEFELD, Bull. Amer. Math. Soc., v. 42, 1936, pp. 231234.
 [1]
 J. H. CONWAY, "Unpredictable iterations," Proc. 1972 Number Theory Conference, Univ. of Colorado, Boulder, Colorado, 1972, pp. 4552. MR 0392904 (52:13717)
 [2]
 I. N. HERSTEIN & I. KAPLANSKY, Matters Mathematical, 1974.
 [3]
 C. J. EVERETT, "Iteration of the numbertheoretic function ," Advances in Math., v. 25, 1977, pp.4245. MR 0457344 (56:15552)
 [4]
 M. ABRAMOWITZ & I. STEGUN (Editors), Handbook of Mathematical Functions, 9th printing, Dover, New York, 1965.
 [5]
 Zentralblatt für Mathematik, Band 233, p. 10041.
 [6]
 J. ROBERTS, Elementary Number TheoryA Problem Oriented Approach, M.I.T. Press, Cambridge, Mass., 1977. MR 0498337 (58:16472)
 [7]
 Y. A. KHINCHIN, Continued Fractions, Univ. of Chicago, Chicago, Ill., 1964. MR 0161833 (28:5037)
 [8]
 Pi Mu Epsilon Journal, v. 5, 1972, pp. 338, 463.
 [9]
 S. S. PILLAI, J. Indian Math. Soc., v. 19, 1931, pp. 111.
 [10]
 A. HERSCHEFELD, Bull. Amer. Math. Soc., v. 42, 1936, pp. 231234.
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
10A99
Retrieve articles in all journals
with MSC:
10A99
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197804803213
PII:
S 00255718(1978)04803213
Keywords:
Algorithm,
diophantine equation
Article copyright:
© Copyright 1978
American Mathematical Society
