A further correspondence property of fractions

Author:
J. H. McCabe

Journal:
Math. Comp. **32** (1978), 1303-1305

MSC:
Primary 41A20

MathSciNet review:
0481779

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: It is shown that when all the coefficients, after the first, of one of the two corresponding series of an *M* fraction are zero then the *M* fraction has a symmetrical form.

**[1]**J. H. McCabe,*A continued fraction expansion, with a truncation error estimate, for Dawson’s integral*, Math. Comp.**28**(1974), 811–816. MR**0371020**, 10.1090/S0025-5718-1974-0371020-3**[2]**J. H. McCabe,*A formal extension of the Padé table to include two point Padé quotionts*, J. Inst. Math. Appl.**15**(1975), 363–372. MR**0381246****[3]**J. H. McCabe and J. A. Murphy,*Continued fractions which correspond to power series expansions at two points*, J. Inst. Math. Appl.**17**(1976), no. 2, 233–247. MR**0422628****[4]**D. Dijkstra,*A continued fraction expansion for a generalization of Dawson’s integral*, Math. Comp.**31**(1977), no. 138, 503–510. MR**0460956**, 10.1090/S0025-5718-1977-0460956-3**[5]**William B. Jones,*Multiple-point Padé tables*, Padé and rational approximation (Proc. Internat. Sympos., Univ. South Florida, Tampa, Fla., 1976) Academic Press, New York, 1977, pp. 163–171. MR**0613840**

Retrieve articles in *Mathematics of Computation*
with MSC:
41A20

Retrieve articles in all journals with MSC: 41A20

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0481779-6

Keywords:
Continued fractions

Article copyright:
© Copyright 1978
American Mathematical Society