Simultaneous approximation in scales of Banach spaces
Authors:
James H. Bramble and Ridgway Scott
Journal:
Math. Comp. 32 (1978), 947954
MSC:
Primary 65N30; Secondary 46M35
MathSciNet review:
501990
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods.
 [1]
Ivo
Babuška, The finite element method with
penalty, Math. Comp. 27 (1973), 221–228. MR 0351118
(50 #3607), http://dx.doi.org/10.1090/S00255718197303511185
 [2]
I.
Babuška and R.
B. Kellogg, Nonuniform error estimates for the finite element
method, SIAM J. Numer. Anal. 12 (1975), no. 6,
868–875. MR 0411201
(53 #14939)
 [3]
Garth
A. Baker, Simplified proofs of error estimates
for the least squares method for Dirichlet’s problem, Math. Comp. 27 (1973), 229–235. MR 0327056
(48 #5398), http://dx.doi.org/10.1090/S00255718197303270560
 [4]
James
H. Bramble and Alfred
H. Schatz, RayleighRitzGalerkin methods for Dirichlet’s
problem using subspaces without boundary conditions, Comm. Pure Appl.
Math. 23 (1970), 653–675. MR 0267788
(42 #2690)
 [5]
J.
H. Bramble and A.
H. Schatz, Least squares methods for 2𝑚th
order elliptic boundaryvalue problems, Math.
Comp. 25 (1971),
1–32. MR
0295591 (45 #4657), http://dx.doi.org/10.1090/S00255718197102955918
 [6]
James
H. Bramble and Vidar
Thomée, Discrete time Galerkin methods for a parabolic
boundary value problem, Ann. Mat. Pura Appl. (4) 101
(1974), 115–152. MR 0388805
(52 #9639)
 [7]
Paul
L. Butzer and Hubert
Berens, Semigroups of operators and approximation, Die
Grundlehren der mathematischen Wissenschaften, Band 145, SpringerVerlag
New York Inc., New York, 1967. MR 0230022
(37 #5588)
 [8]
Jim
Douglas Jr. and Todd
Dupont, Galerkin methods for parabolic equations with nonlinear
boundary conditions, Numer. Math. 20 (1972/73),
213–237. MR 0319379
(47 #7923)
 [9]
J. L. LIONS & E. MAGENES , Nonhomogeneous Boundary Value Problems and Applications, Vol. 1, SpringerVerlag, Berlin and New York, 1972.
 [10]
Frank
Natterer, The finite element method for illposed problems,
RAIRO Anal. Numér. 11 (1977), no. 3,
271–278. MR 0519587
(58 #24920)
 [11]
Joachim
A. Nitsche and Alfred
H. Schatz, Interior estimates for RitzGalerkin
methods, Math. Comp. 28 (1974), 937–958. MR 0373325
(51 #9525), http://dx.doi.org/10.1090/S00255718197403733259
 [12]
P.A.
Raviart, The use of numerical integration in finite element methods
for solving parabolic equations, Topics in numerical analysis (Proc.
Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press,
London, 1973, pp. 233–264. MR 0345428
(49 #10164)
 [13]
Martin
H. Schultz, 𝐿² error bounds for the
RayleighRitzGalerkin method, SIAM J. Numer. Anal. 8
(1971), 737–748. MR 0298918
(45 #7967)
 [14]
Ridgway
Scott, Applications of Banach space interpolation to finite element
theory, Functional analysis methods in numerical analysis (Proc.
Special Session, Annual Meeting, Amer. Math. Soc., St. Louis, Mo., 1977)
Lecture Notes in Math., vol. 701, Springer, Berlin, 1979,
pp. 298–318. MR 526721
(80b:65139)
 [1]
 I. BABUŠKA, "The finite element method with penalty," Math. Comp., v. 27, 1973, pp. 221228. MR 0351118 (50:3607)
 [2]
 I. BABUŠKA & B. KELLOGG, "Non uniform estimates for the finite element method," Siam J. Numer. Anal., v. 12, 1975, pp. 868875. MR 0411201 (53:14939)
 [3]
 G. A. BAKER, "Simplified proofs of error estimates for the least squares method for Dirichlet's problem," Math. Comp., v. 27, 1973, pp. 229235. MR 0327056 (48:5398)
 [4]
 J. H. BRAMBLE & A H. SCHATZ, "RayleighRitzGalerkin methods for Dirichlet's problem using subspaces without boundary conditions," Comm. Pure Appl. Math., v. 23, 1970, pp. 653674. MR 0267788 (42:2690)
 [5]
 J. H. BRAMBLE & A. H. SCHATZ, "Least squares methods for 2mth order elliptic boundaryvalue problems," Math. Comp., v. 25, 1971, pp. 132. MR 0295591 (45:4657)
 [6]
 J. H. BRAMBLE & V. THOMÉE, "Discrete time Galerkin methods for a parabolic boundary value problem," Ann. Mat. Pura Appl., v. 101, 1974, pp. 115152. MR 0388805 (52:9639)
 [7]
 P. L. BUTZER & H. BERENS, SemiGroups of Operators and Approximation, SpringerVerlag, Berlin and New York, 1967. MR 0230022 (37:5588)
 [8]
 J. DOUGLAS, Jr. & T. DUPONT, "Galerkin methods for parabolic equations with nonlinear boundary conditions," Numer. Math., v. 20, 1973, pp. 213237. MR 0319379 (47:7923)
 [9]
 J. L. LIONS & E. MAGENES , Nonhomogeneous Boundary Value Problems and Applications, Vol. 1, SpringerVerlag, Berlin and New York, 1972.
 [10]
 F. NATTERER, "The finite element method for illposed problems," RAIRO, v. 11, 1977, pp. 271278. MR 0519587 (58:24920)
 [11]
 J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for RitzGalerkin methods," Math. Comp., v. 28, 1974, pp. 937958. MR 0373325 (51:9525)
 [12]
 P. A. RAVIART, "The use of numerical integration in finite element methods for solving parabolic equations," Topics in Numerical Analysis, J. J. H. Miller, ed., Academic Press, New York, 1973, pp. 233264. MR 0345428 (49:10164)
 [13]
 M. H. SCHULTZ, " error bounds for the RayleighRitzGalerkin method," SIAM J. Numer. Anal., v. 8, 1971, pp. 737748. MR 0298918 (45:7967)
 [14]
 R. SCOTT, "Applications of Banach space interpolation to finite element theory," Functional Analysis Methods in Numerical Analysis (M. Z. Nashed, Editor), SpringerVerlag, Berlin and New York. MR 526721 (80b:65139)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65N30,
46M35
Retrieve articles in all journals
with MSC:
65N30,
46M35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197805019905
PII:
S 00255718(1978)05019905
Article copyright:
© Copyright 1978
American Mathematical Society
