Simultaneous approximation in scales of Banach spaces

Authors:
James H. Bramble and Ridgway Scott

Journal:
Math. Comp. **32** (1978), 947-954

MSC:
Primary 65N30; Secondary 46M35

MathSciNet review:
501990

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods.

**[1]**Ivo Babuška,*The finite element method with penalty*, Math. Comp.**27**(1973), 221–228. MR**0351118**, 10.1090/S0025-5718-1973-0351118-5**[2]**I. Babuška and R. B. Kellogg,*Nonuniform error estimates for the finite element method*, SIAM J. Numer. Anal.**12**(1975), no. 6, 868–875. MR**0411201****[3]**Garth A. Baker,*Simplified proofs of error estimates for the least squares method for Dirichlet’s problem*, Math. Comp.**27**(1973), 229–235. MR**0327056**, 10.1090/S0025-5718-1973-0327056-0**[4]**James H. Bramble and Alfred H. Schatz,*Rayleigh-Ritz-Galerkin methods for Dirichlet’s problem using subspaces without boundary conditions*, Comm. Pure Appl. Math.**23**(1970), 653–675. MR**0267788****[5]**J. H. Bramble and A. H. Schatz,*Least squares methods for 2𝑚th order elliptic boundary-value problems*, Math. Comp.**25**(1971), 1–32. MR**0295591**, 10.1090/S0025-5718-1971-0295591-8**[6]**James H. Bramble and Vidar Thomée,*Discrete time Galerkin methods for a parabolic boundary value problem*, Ann. Mat. Pura Appl. (4)**101**(1974), 115–152. MR**0388805****[7]**Paul L. Butzer and Hubert Berens,*Semi-groups of operators and approximation*, Die Grundlehren der mathematischen Wissenschaften, Band 145, Springer-Verlag New York Inc., New York, 1967. MR**0230022****[8]**Jim Douglas Jr. and Todd Dupont,*Galerkin methods for parabolic equations with nonlinear boundary conditions*, Numer. Math.**20**(1972/73), 213–237. MR**0319379****[9]**J. L. LIONS & E. MAGENES ,*Non-homogeneous Boundary Value Problems and Applications*, Vol. 1, Springer-Verlag, Berlin and New York, 1972.**[10]**Frank Natterer,*The finite element method for ill-posed problems*, RAIRO Anal. Numér.**11**(1977), no. 3, 271–278. MR**0519587****[11]**Joachim A. Nitsche and Alfred H. Schatz,*Interior estimates for Ritz-Galerkin methods*, Math. Comp.**28**(1974), 937–958. MR**0373325**, 10.1090/S0025-5718-1974-0373325-9**[12]**P.-A. Raviart,*The use of numerical integration in finite element methods for solving parabolic equations*, Topics in numerical analysis (Proc. Roy. Irish Acad. Conf., University Coll., Dublin, 1972) Academic Press, London, 1973, pp. 233–264. MR**0345428****[13]**Martin H. Schultz,*𝐿² error bounds for the Rayleigh-Ritz-Galerkin method*, SIAM J. Numer. Anal.**8**(1971), 737–748. MR**0298918****[14]**Ridgway Scott,*Applications of Banach space interpolation to finite element theory*, Functional analysis methods in numerical analysis (Proc. Special Session, Annual Meeting, Amer. Math. Soc., St. Louis, Mo., 1977) Lecture Notes in Math., vol. 701, Springer, Berlin, 1979, pp. 298–318. MR**526721**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
46M35

Retrieve articles in all journals with MSC: 65N30, 46M35

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1978-0501990-5

Article copyright:
© Copyright 1978
American Mathematical Society