Simultaneous approximation in scales of Banach spaces

Authors:
James H. Bramble and Ridgway Scott

Journal:
Math. Comp. **32** (1978), 947-954

MSC:
Primary 65N30; Secondary 46M35

DOI:
https://doi.org/10.1090/S0025-5718-1978-0501990-5

MathSciNet review:
501990

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The problem of verifying optimal approximation simultaneously in different norms in a Banach scale is reduced to verification of optimal approximation in the highest order norm. The basic tool used is the Banach space interpolation method developed by Lions and Peetre. Applications are given to several problems arising in the theory of finite element methods.

**[1]**I. BABUŠKA, "The finite element method with penalty,"*Math. Comp.*, v. 27, 1973, pp. 221-228. MR**0351118 (50:3607)****[2]**I. BABUŠKA & B. KELLOGG, "Non uniform estimates for the finite element method,"*Siam J. Numer. Anal.*, v. 12, 1975, pp. 868-875. MR**0411201 (53:14939)****[3]**G. A. BAKER, "Simplified proofs of error estimates for the least squares method for Dirichlet's problem,"*Math. Comp.*, v. 27, 1973, pp. 229-235. MR**0327056 (48:5398)****[4]**J. H. BRAMBLE & A H. SCHATZ, "Rayleigh-Ritz-Galerkin methods for Dirichlet's problem using subspaces without boundary conditions,"*Comm. Pure Appl. Math.*, v. 23, 1970, pp. 653-674. MR**0267788 (42:2690)****[5]**J. H. BRAMBLE & A. H. SCHATZ, "Least squares methods for 2*m*th order elliptic boundary-value problems,"*Math. Comp.*, v. 25, 1971, pp. 1-32. MR**0295591 (45:4657)****[6]**J. H. BRAMBLE & V. THOMÉE, "Discrete time Galerkin methods for a parabolic boundary value problem,"*Ann. Mat. Pura Appl.*, v. 101, 1974, pp. 115-152. MR**0388805 (52:9639)****[7]**P. L. BUTZER & H. BERENS,*Semi-Groups of Operators and Approximation*, Springer-Verlag, Berlin and New York, 1967. MR**0230022 (37:5588)****[8]**J. DOUGLAS, Jr. & T. DUPONT, "Galerkin methods for parabolic equations with non-linear boundary conditions,"*Numer. Math.*, v. 20, 1973, pp. 213-237. MR**0319379 (47:7923)****[9]**J. L. LIONS & E. MAGENES ,*Non-homogeneous Boundary Value Problems and Applications*, Vol. 1, Springer-Verlag, Berlin and New York, 1972.**[10]**F. NATTERER, "The finite element method for ill-posed problems,"*RAIRO*, v. 11, 1977, pp. 271-278. MR**0519587 (58:24920)****[11]**J. A. NITSCHE & A. H. SCHATZ, "Interior estimates for Ritz-Galerkin methods,"*Math. Comp.*, v. 28, 1974, pp. 937-958. MR**0373325 (51:9525)****[12]**P. A. RAVIART, "The use of numerical integration in finite element methods for solving parabolic equations,"*Topics in Numerical Analysis*, J. J. H. Miller, ed., Academic Press, New York, 1973, pp. 233-264. MR**0345428 (49:10164)****[13]**M. H. SCHULTZ, " error bounds for the Rayleigh-Ritz-Galerkin method,"*SIAM J. Numer. Anal.*, v. 8, 1971, pp. 737-748. MR**0298918 (45:7967)****[14]**R. SCOTT, "Applications of Banach space interpolation to finite element theory,"*Functional Analysis Methods in Numerical Analysis*(M. Z. Nashed, Editor), Springer-Verlag, Berlin and New York. MR**526721 (80b:65139)**

Retrieve articles in *Mathematics of Computation*
with MSC:
65N30,
46M35

Retrieve articles in all journals with MSC: 65N30, 46M35

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1978-0501990-5

Article copyright:
© Copyright 1978
American Mathematical Society