Free subgroups of the free product of cyclic groups

Author:
W. W. Stothers

Journal:
Math. Comp. **32** (1978), 1274-1280

MSC:
Primary 20E06

MathSciNet review:
502015

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Two kinds of recurrence relation for the number of subgroups of finite index in a free product of finitely many cyclic groups are given. An asymptotic formula is obtained from the first of these relations.

**[1]**I. M. S. Dey,*Schreier systems in free products*, Proc. Glasgow Math. Assoc.**7**(1965), 61–79 (1965). MR**0188279****[2]**Ralph H. Fox,*On Fenchel’s conjecture about 𝐹-groups*, Mat. Tidsskr. B.**1952**(1952), 61–65. MR**0053937****[3]**Marshall Hall Jr.,*Subgroups of finite index in free groups*, Canadian J. Math.**1**(1949), 187–190. MR**0028836****[4]**Leo Moser and Max Wyman,*Asymptotic expansions*, Canad. J. Math.**8**(1956), 225–233. MR**0078488****[5]**Morris Newman,*Asymptotic formulas related to free products of cyclic groups*, Math. Comp.**30**(1976), no. 136, 838–846. MR**0466047**, 10.1090/S0025-5718-1976-0466047-9**[6]**W. W. Stothers,*The number of subgroups of given index in the modular group*, Proc. Roy. Soc. Edinburgh Sect. A**78**(1977/78), no. 1-2, 105–112. MR**0480341****[7]**W. W. Stothers,*Subgroups of infinite index in the modular group*, Glasgow Math. J.**19**(1978), no. 1, 33–43. MR**508344**, 10.1017/S0017089500003347

Retrieve articles in *Mathematics of Computation*
with MSC:
20E06

Retrieve articles in all journals with MSC: 20E06

Additional Information

DOI:
http://dx.doi.org/10.1090/S0025-5718-1978-0502015-8

Article copyright:
© Copyright 1978
American Mathematical Society