James H. Bramble and Ridgway Scott, Simultaneous Approximation in Scales of Banach Spaces ... 947

H. B. Keller and V. Pereyra, Symbolic Generation of Finite Difference Formulas .. 955

J. Giroire and J. C. Nedelec, Numerical Solution of an Exterior Neumann Problem Using a Double Layer Potential .. 973

I. Babuška and J. E. Osborn, Numerical Treatment of Eigenvalue Problems for Differential Equations with Discontinuous Coefficients .. 991

R. Bruce Kellogg and Alice Tsan, Analysis of Some Difference Approximations for a Singular Perturbation Problem Without Turning Points 1025

Andrew Majda, James McDonough and Stanley Osher, The Fourier Method for Nonsmooth Initial Data .. 1041

R. A. Nicolaides, On Multigrid Convergence in the Indefinite Case .. 1082

Riaz A. Usmani, Discrete Variable Methods for a Boundary Value Problem with Engineering Applications .. 1087

Moshe Goldberg and Eitan Tadmor, Scheme-Independent Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems. I .. 1097

Rolf Jeltsch, Complete Characterization of Multistep Methods with an Interval of Periodicity for Solving $y'' = f(x, y)$.. 1108

L. F. Shampine, Limiting Precision in Differential Equation Solvers. II: Sources of Trouble and Starting a Code .. 1115

D. L. Hicks, Stability Analysis of WONDY (A Hydrocode Based on the Artificial Viscosity Method of von Neumann and Richtmyer) for a Special Case of Maxwell's Law .. 1123

D. L. Barrow, C. K. Chui, P. W. Smith and J. D. Ward, Unicity of Best Mean Approximation by Second Order Splines with Variable Knots 1131

C. J. O'Neill and T. Downs, A Numerical Accuracy Consideration in Polynomial Deflation .. 1144

Baker Kearfott, A Proof of Convergence and an Error Bound for the Method of Bisection in R^n .. 1147

David F. McAllister and John A. Roulier, Interpolation by Convex Quadratic Splines .. 1154

R. C. Y. Chin and G. W. Hedstrom, A Dispersion Analysis for Difference Schemes: Tables of Generalized Airy Functions .. 1163

Paul W. Schmidt, An Asymptotic Approximation for a Type of Fourier Integral .. 1171

H. Wolkowicz and S. Zlobec, Calculating the Best Approximate Solution of an Operator Equation .. 1183

Paul S. Wang, An Improved Multivariate Polynomial Factoring Algorithm .. 1215

J. L. Schonfelder, Chebyshev Expansions for the Error and Related Functions .. 1232

Hansraj Gupta, Finite Differences of the Partition Function .. 1241

David W. Boyd, Pisot and Salem Numbers in Intervals of the Real Line .. 1244

Charles J. Parry, On the Class Number of Relative Quadratic Fields .. 1261

Lajos Takács, A Sum of Binomial Coefficients .. 1271
W. W. Stothers, Free Subgroups of the Free Product of Cyclic Groups 1274
R. E. Crandall, On the “3x + 1” Problem .. 1281
J. H. McCabe, A Further Correspondence Property of M Fractions 1303
H. C. Williams, Some Primes with Interesting Digit Patterns 1306
P. L. Walker, On an Integral Summable to 2ξ(s)/s(s - 1) 1311
Reviews and Descriptions of Tables and Books .. 1317
Späth 19, Karlin, Micchelli, Pinkus and Schoenberg 20, Tikhonov and Arsenin 21, Hall and Watt, Editors 22, Fitzgibbon and Walker, Editors 23, Heller 24, Beard and West 25, Jacobs, Editor 26, Descloux and Marty, Editors 27, Zwillinger 28, Baillie 29, Collatz, Meinardus and Wetterling, Editors 30
Corrigenda ... 1328
Jeltsch, Shanks, Editor
Indices to Volume XXXII .. 1330
Microfiche Supplements
D. H. Lehmer and J. M. Masley, Table of the Cyclotomic Class Numbers h*(p) and Their Factors for 200 < p < 521
R. C. Y. Chin and G. W. Hedstrom, A Dispersion Analysis for Difference Schemes: Tables of Generalized Airy Functions

Information for Contributors
Manuscripts should be typewritten double-spaced in the format used by the journal. For journal abbreviations, see the latest Mathematical Reviews volume index. An author should submit the original and two copies of the manuscript and retain one copy. The author may suggest an appropriate editor for his paper. It is recommended that the author acquaint himself with the pertinent material contained in “A Manual for Authors of Mathematical Papers,” which is available from the American Mathematical Society. All contributions intended for publication and all books for review should be addressed to James H. Bramble, Chairman, Editorial Committee, Mathematics of Computation, Center for Applied Mathematics, 275 Olin Hall, Cornell University, Ithaca, New York 14853. Institutions sponsoring research reported in the journal are assessed page and microfiche charges.

Each article submitted for publication must be accompanied by a brief and reasonably self-contained abstract, and by AMS (MOS) subject classification numbers. If a list of key words and phrases is included, it will be printed as a footnote on the first page. A list of the classification numbers may be found in the Index to Mathematical Reviews, Volume 39 (June 1970).

The research journals of the American Mathematical Society carry a page charge of $40.00 per page to help defray the cost of publication. This amount is charged to the institution or to a contract supporting the research reported in the published paper. The publication charge policy of the United States Federal Council for Science and Technology (FCST) is reported on page 112 of the February, 1975 issue of the NOTICES of the American Mathematical Society. In no case is the author personally responsible for paying the page charge, nor is acceptance of the author’s paper for publication dependent upon payment of the page charge.
"The papers given here are mainly of a mathematical nature. The results presented describe properties of computational methods that are only relevant in the context of that computation. It is the need to perform the computation which presents the problems to the subject and justifies it. For example, in the emerging field of Computational Physics methods are developed as they are needed for various problems. These methods are usually constructed via physical reasoning, experience, and intuition. They are often tested on problems with known solutions, but their validity is often judged on their behavior in physical terms. It is then the numerical analyst who attempts to give error estimates and describe the numerical behavior of these methods. The convergence results needed here differ from those of classical constructive analysis. Error estimates which hold for finite values of the discretization parameters are what are really needed, as opposed to asymptotic estimates as these parameters tend to zero. The effect of rounding errors is a central issue in numerical analysis and is a unique aspect of the subject. Algorithms which are otherwise exact may be useless because of rounding errors.

Though applications are discussed here, the important relationships between the problems, the algorithms, and the machines used for the computation which are vital to the spirit of the field cannot be found here. Numerical analysis is not a textbook subject; computational experience is essential.

We hope that these manuscripts and their bibliographies will prove useful to those who wish to learn something of the nature of numerical analysis and what some of the current problems of interest are."

— From the Preface

THE LECTURERS AND TITLES

CLEVE MOLER, Three Research Problems in Numerical Linear Algebra
J. E. DENNIS, JR., A Brief Introduction to Quasi-Newton Methods
CARL De BOOR, The Approximation of Functions and Linear Functionals: Best vs. Good Approximation
JAMES M. VARAH, Numerical Methods for the Solution of Ordinary Differential Equations
JOSEPH E. OLIGER, Methods for Time Dependent Partial Differential Equations
GEORGE J. FIX, Variational Methods for Elliptic Boundary Value Problems
W. W. Stothers, Free Subgroups of the Free Product of Cyclic Groups 1274
R. E. Crandall, On the "3x + 1" Problem .. 1281
J. H. McCabe, A Further Correspondence Property of M Fractions 1303
H. C. Williams, Some Primes with Interesting Digit Patterns 1306
P. L. Walker, On an Integral Summable to $2\xi(s)/s(s - 1)$ 1311
Reviews and Descriptions of Tables and Books 1317
 Späth 19, Karlin, Micchelli, Pinkus and Schoenberg 20, Tikhonov and Arsenin 21, Hall and Watt, Editors 22, Fitzgibbon and Walker, Editors 23, Heller 24, Bear and West 25, Jacobs, Editor 26, Descloux and Marty, Editors 27, Zwillinger 28, Baillie 29, Collatz, Meinardus and Wetterling, Editors 30
Corrigenda .. 1328
 Jeltsch, Shanks, Editor
Indices to Volume XXXII .. 1330
Microfiche Supplements
 D. H. Lehmer and J. M. Masley, Table of the Cyclotomic Class Numbers $h^*(p)$ and Their Factors for $200 < p < 521$
 R. C. Y. Chin and G. W. Hedstrom, A Dispersion Analysis for Difference Schemes: Tables of Generalized Airy Functions
MATHEMATICS OF COMPUTATION

TABLE OF CONTENTS

OCTOBER 1978

<table>
<thead>
<tr>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>James H. Bramble and Ridgway Scott, Simultaneous Approximation in Scales of Banach Spaces</td>
<td>947</td>
</tr>
<tr>
<td>H. B. Keller and V. Pereyra, Symbolic Generation of Finite Difference Formulas</td>
<td>955</td>
</tr>
<tr>
<td>J. Giroire and J. C. Nedelec, Numerical Solution of an Exterior Neumann Problem Using a Double Layer Potential</td>
<td>973</td>
</tr>
<tr>
<td>I. Babuška and J. E. Osborn, Numerical Treatment of Eigenvalue Problems for Differential Equations with Discontinuous Coefficients</td>
<td>991</td>
</tr>
<tr>
<td>R. Bruce Kellogg and Alice Tsan, Analysis of Some Difference Approximations for a Singular Perturbation Problem Without Turning Points</td>
<td>1025</td>
</tr>
<tr>
<td>Andrew Majda, James McDonough and Stanley Osher, The Fourier Method for Nonsmooth Initial Data</td>
<td>1041</td>
</tr>
<tr>
<td>R. A. Nicolaides, On Multigrid Convergence in the Indefinite Case</td>
<td>1082</td>
</tr>
<tr>
<td>Riaz A. Usmani, Discrete Variable Methods for a Boundary Value Problem with Engineering Applications</td>
<td>1087</td>
</tr>
<tr>
<td>Moshe Goldberg and Eitan Tadmor, Scheme-Independent Stability Criteria for Difference Approximations of Hyperbolic Initial-Boundary Value Problems. I</td>
<td>1097</td>
</tr>
<tr>
<td>Rolf Jeltsch, Complete Characterization of Multistep Methods with an Interval of Periodicity for Solving $y'' = f(x, y)$</td>
<td>1108</td>
</tr>
<tr>
<td>L. F. Shampine, Limiting Precision in Differential Equation Solvers. II: Sources of Trouble and Starting a Code</td>
<td>1115</td>
</tr>
<tr>
<td>D. L. Hicks, Stability Analysis of WONDMY (A Hydrocode Based on the Artificial Viscosity Method of von Neumann and Richtmyer) for a Special Case of Maxwell’s Law</td>
<td>1123</td>
</tr>
<tr>
<td>D. L. Barrow, C. K. Chui, P. W. Smith and J. D. Ward, Unicity of Best Mean Approximation by Second Order Splines with Variable Knots</td>
<td>1131</td>
</tr>
<tr>
<td>C. J. O’Neill and T. Downs, A Numerical Accuracy Consideration in Polynomial Deflation</td>
<td>1144</td>
</tr>
<tr>
<td>Baker Keafott, A Proof of Convergence and an Error Bound for the Method of Bisection in \mathbb{R}^n</td>
<td>1147</td>
</tr>
<tr>
<td>David F. McAllister and John A. Roulier, Interpolation by Convex Quadratic Splines</td>
<td>1154</td>
</tr>
<tr>
<td>R. C. Y. Chin and G.W. Hedstrom, A Dispersion Analysis for Difference Schemes: Tables of Generalized Airy Functions</td>
<td>1163</td>
</tr>
<tr>
<td>Paul W. Schmidt, An Asymptotic Approximation for a Type of Fourier Integral</td>
<td>1171</td>
</tr>
<tr>
<td>H. Wolkowicz and S. Zlobec, Calculating the Best Approximate Solution of an Operator Equation</td>
<td>1183</td>
</tr>
<tr>
<td>Paul S. Wang, An Improved Multivariate Polynomial Factoring Algorithm</td>
<td>1215</td>
</tr>
<tr>
<td>J. L. Schonfelder, Chebyshev Expansions for the Error and Related Functions</td>
<td>1232</td>
</tr>
<tr>
<td>Hansraj Gupta, Finite Differences of the Partition Function</td>
<td>1241</td>
</tr>
<tr>
<td>David W. Boyd, Pisot and Salem Numbers in Intervals of the Real Line</td>
<td>1244</td>
</tr>
<tr>
<td>Charles J. Parry, On the Class Number of Relative Quadratic Fields</td>
<td>1261</td>
</tr>
<tr>
<td>Lajos Takács, A Sum of Binomial Coefficients</td>
<td>1271</td>
</tr>
</tbody>
</table>