A new stepsize changing technique for multistep methods
Authors:
G. K. Gupta and C. S. Wallace
Journal:
Math. Comp. 33 (1979), 125138
MSC:
Primary 65L05; Secondary 65D30
MathSciNet review:
514814
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: The stepsize changing technique is an important component of a Variable Step Variable Order algorithm for solving ordinary differential equations using multistep methods. This paper presents a new technique for changing the stepsize and compares its performance to that of the VariableStep and FixedStep Interpolation techniques.
 [1]
Robert
K. Brayton, Fred
G. Gustavson, and Gary
D. Hachtel, A new efficient algorithm for solving
differentialalgebraic systems using implicit backward differentiation
formulas, Proc. IEEE 60 (1972), 98–108. MR 0351101
(50 #3592)
 [2]
G.
D. Byrne and A.
C. Hindmarsh, A polyalgorithm for the numerical solution of
ordinary differential equations, ACM Trans. Math. Software
1 (1975), no. 1, 71–96. MR 0378432
(51 #14600)
 [3]
W. H. ENRIGHT, T. E. HULL & B. LINDBERG, (1975), "Comparing numerical methods for stiff systems of O.D.E.s," BIT, v. 15, pp. 1048.
 [4]
C.
William Gear, Numerical initial value problems in ordinary
differential equations, PrenticeHall, Inc., Englewood Cliffs, N.J.,
1971. MR
0315898 (47 #4447)
 [5]
C.
W. Gear, The automatic integration of ordinary differential
equations, Comm. ACM 14 (1971), no. 3,
176–179. MR 0388778
(52 #9612)
 [6]
C.
W. Gear and K.
W. Tu, The effect of variable mesh size on the stability of
multistep methods, SIAM J. Numer. Anal. 11 (1974),
1025–1043. MR 0368436
(51 #4677)
 [7]
G. K. GUPTA, (1975), New Multistep Methods for the Solution of Ordinary Differential Equations, Ph. D. Thesis, Monash Univ., Australia. (Unpublished.)
 [8]
G.
K. Gupta, Some new highorder multistep formulae
for solving stiff equations, Math. Comp.
30 (1976), no. 135, 417–432. MR 0423812
(54 #11786), http://dx.doi.org/10.1090/S00255718197604238121
 [9]
G. K. GUPTA (1978), Numerical Testing of the ASI Technique of StepSize Changing, Tech. Rep., Dept. of Computer Science, Monash Univ., Victoria, Australia.
 [10]
G.
K. Gupta and C.
S. Wallace, Some new multistep methods for solving
ordinary differential equations, Math.
Comp. 29 (1975),
489–500. MR 0373290
(51 #9490), http://dx.doi.org/10.1090/S00255718197503732905
 [11]
Peter
Henrici, Discrete variable methods in ordinary differential
equations, John Wiley & Sons, Inc., New YorkLondon, 1962. MR 0135729
(24 #B1772)
 [12]
T.
E. Hull, W.
H. Enright, B.
M. Fellen, and A.
E. Sedgwick, Comparing numerical methods for ordinary differential
equations, SIAM J. Numer. Anal. 9 (1972),
603–637; errata, ibid. 11 (1974), 681. MR 0351086
(50 #3577)
 [13]
Rolf
Jeltsch, Stiff stability and its relation to 𝐴₀ and
𝐴(0)stability, SIAM J. Numer. Anal. 13
(1976), no. 1, 8–17. MR 0411174
(53 #14913)
 [14]
Fred
T. Krogh, Algorithms for changing the step size, SIAM J.
Numer. Anal. 10 (1973), 949–965. MR 0356515
(50 #8985)
 [15]
Fred
T. Krogh, A variable step, variable order multistep method for the
numerical solution of ordinary differential equations, Information
Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) NorthHolland,
Amsterdam, 1969, pp. 194–199. MR 0261790
(41 #6402)
 [16]
Arnold
Nordsieck, On numerical integration of ordinary
differential equations, Math. Comp. 16 (1962), 22–49. MR 0136519
(24 #B2552), http://dx.doi.org/10.1090/S00255718196201365195
 [17]
Peter
Piotrowski, Stability, consistency and convergence of variable
𝑘step methods for numerical integration of large systems of
ordinary differential equations, Conf. on Numerical Solution of
Differential Equations (Dundee, 1969), Springer, Berlin, 1969,
pp. 221–227. MR 0277116
(43 #2853)
 [18]
A. SEDGWICK, (1973), An Effective Variable Order Variable Step Adams Method, Tech. Rep. No. 53, Dept. of Computer Science, Univ. of Toronto, Canada.
 [19]
L.
F. Shampine and M.
K. Gordon, Local error and variable order Adams codes, Appl.
Math. Comput. 1 (1975), no. 1, 47–66. MR 0373294
(51 #9494)
 [20]
L.
F. Shampine and M.
K. Gordon, Computer solution of ordinary differential
equations, W. H. Freeman and Co., San Francisco, Calif., 1975. The
initial value problem. MR 0478627
(57 #18104)
 [21]
K. W. TU, (1972), Stability and Convergence of General Multistep and Multivalue Methods with Variable Step Size, Report No. UIUCDCSR72526, Dept. of Computer Science, Univ. of Illinois, Unbana.
 [22]
C.
S. Wallace and G.
K. Gupta, General linear multistep methods to solve ordinary
differential equations, Austral. Comput. J. 5 (1973),
62–69. MR
0362919 (50 #15357)
 [1]
 R. K. BRAYTON, F. G. GUSTAVSON & G. D. HACHTEL, (1972), "A new efficient algorithm for solving differentialalgebraic systems using implicit backward differentiation formulae," Proc. IEEE, v. 60, pp. 98108. MR 0351101 (50:3592)
 [2]
 G. D. BYRNE & A. C. HINDMARSH, (1975), "A polyalgorithm for the numerical solution of ordinary differential equations," ACM Trans. Math. Software, v. 1, pp. 7196. MR 0378432 (51:14600)
 [3]
 W. H. ENRIGHT, T. E. HULL & B. LINDBERG, (1975), "Comparing numerical methods for stiff systems of O.D.E.s," BIT, v. 15, pp. 1048.
 [4]
 C. W. GEAR, (1971a), Numerical Initial Value Problems in Ordinary Differential Equations, PrenticeHall, Englewood Cliffs, N. J. MR 0315898 (47:4447)
 [5]
 C. W. GEAR, (1971b), "Algorithm 407DIFSUB for solution of ordinary differential equations," Comm. ACM, v. 14, pp. 185190. MR 0388778 (52:9612)
 [6]
 C. W. GEAR & K. W. TU, (1974), "The effect of variable mesh size on the stability of multistep methods," SINUM, v. 11, pp. 10251043. MR 0368436 (51:4677)
 [7]
 G. K. GUPTA, (1975), New Multistep Methods for the Solution of Ordinary Differential Equations, Ph. D. Thesis, Monash Univ., Australia. (Unpublished.)
 [8]
 G. K. GUPTA, (1976), "Some new highorder multistep formulae for solving stiff equations," Math. Comp., v. 30, pp. 417432. MR 0423812 (54:11786)
 [9]
 G. K. GUPTA (1978), Numerical Testing of the ASI Technique of StepSize Changing, Tech. Rep., Dept. of Computer Science, Monash Univ., Victoria, Australia.
 [10]
 G. K. GUPTA & C. S. WALLACE, (1975), "Some new multistep methods for solving ordinary differential equations," Math. Comp., v. 29, pp. 489500. MR 0373290 (51:9490)
 [11]
 P. HENRICI, (1962), Discrete Variable Methods in Ordinary Differential Equations, Wiley, New York. MR 0135729 (24:B1772)
 [12]
 T. E. HULL, W. H. ENRIGHT, B. M. FELLER & A. E. SEDGWICK, (1971), "Comparing numerical methods for ordinary differential equations," SINUM, v. 9, pp. 603637. MR 0351086 (50:3577)
 [13]
 R. JELTSCH, (1976), "Stiff stability and its relation to and stability," SINUM, v. 13, pp. 817. MR 0411174 (53:14913)
 [14]
 F. T. KROGH, (1973), "Algorithms for changing the stepsize," SINUM, v. 10, pp. 949965. MR 0356515 (50:8985)
 [15]
 F. T. KROGH, (1969), A Variable Step Variable Order Multistep Method for the Numerical Solution of Ordinary Differential Equations (Proc. IFIP Congr., 1968), NorthHolland, Amsterdam, pp. 194199. MR 0261790 (41:6402)
 [16]
 A. NORDSIECK, (1962), "On the numerical integration of ordinary differential equations," Math. Comp., v. 16, pp. 2249. MR 0136519 (24:B2552)
 [17]
 P. PIOTROWSKI, (1969), Stability, Consistency and Convergence of Variable KStep Methods, Conference on Numerical Solution of Differential Equations, Lecture Notes in Math., vol. 109, SpringerVerlag, New York and Berlin. MR 0277116 (43:2853)
 [18]
 A. SEDGWICK, (1973), An Effective Variable Order Variable Step Adams Method, Tech. Rep. No. 53, Dept. of Computer Science, Univ. of Toronto, Canada.
 [19]
 L. F. SHAMPINE & M. K. GORDON, (1975), "Local error and variable order Adams codes," Appl. Math. Comput., v. 1, pp. 4766. MR 0373294 (51:9494)
 [20]
 L. F. SHAMPINE & M. K. GORDON, (1975), Computer Solution of Ordinary Differential Equations: The Initial Value Problem, Freeman, San Francisco, Calif. MR 0478627 (57:18104)
 [21]
 K. W. TU, (1972), Stability and Convergence of General Multistep and Multivalue Methods with Variable Step Size, Report No. UIUCDCSR72526, Dept. of Computer Science, Univ. of Illinois, Unbana.
 [22]
 C. S. WALLACE & G. K. GUPTA, (1973), "General multistep methods to solve ordinary differential equations," Austral. Comput. J., v. 5, pp. 6269. MR 0362919 (50:15357)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65L05,
65D30
Retrieve articles in all journals
with MSC:
65L05,
65D30
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197905148148
PII:
S 00255718(1979)05148148
Keywords:
Multistep methods,
stiff equations,
ordinary differential equations,
initial value problems
Article copyright:
© Copyright 1979
American Mathematical Society
