A new step-size changing technique for multistep methods

Authors:
G. K. Gupta and C. S. Wallace

Journal:
Math. Comp. **33** (1979), 125-138

MSC:
Primary 65L05; Secondary 65D30

MathSciNet review:
514814

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: The step-size changing technique is an important component of a Variable Step Variable Order algorithm for solving ordinary differential equations using multi-step methods. This paper presents a new technique for changing the step-size and compares its performance to that of the Variable-Step and Fixed-Step Interpolation techniques.

**[1]**Robert K. Brayton, Fred G. Gustavson, and Gary D. Hachtel,*A new efficient algorithm for solving differential-algebraic systems using implicit backward differentiation formulas*, Proc. IEEE**60**(1972), 98–108. MR**0351101****[2]**G. D. Byrne and A. C. Hindmarsh,*A polyalgorithm for the numerical solution of ordinary differential equations*, ACM Trans. Math. Software**1**(1975), no. 1, 71–96. MR**0378432****[3]**W. H. ENRIGHT, T. E. HULL & B. LINDBERG, (1975), "Comparing numerical methods for stiff systems of O.D.E.s,"*BIT*, v. 15, pp. 10-48.**[4]**C. William Gear,*Numerical initial value problems in ordinary differential equations*, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0315898****[5]**C. W. Gear,*The automatic integration of ordinary differential equations*, Comm. ACM**14**(1971), no. 3, 176–179. MR**0388778****[6]**C. W. Gear and K. W. Tu,*The effect of variable mesh size on the stability of multistep methods*, SIAM J. Numer. Anal.**11**(1974), 1025–1043. MR**0368436****[7]**G. K. GUPTA, (1975),*New Multistep Methods for the Solution of Ordinary Differential Equations*, Ph. D. Thesis, Monash Univ., Australia. (Unpublished.)**[8]**G. K. Gupta,*Some new high-order multistep formulae for solving stiff equations*, Math. Comp.**30**(1976), no. 135, 417–432. MR**0423812**, 10.1090/S0025-5718-1976-0423812-1**[9]**G. K. GUPTA (1978),*Numerical Testing of the ASI Technique of Step-Size Changing*, Tech. Rep., Dept. of Computer Science, Monash Univ., Victoria, Australia.**[10]**G. K. Gupta and C. S. Wallace,*Some new multistep methods for solving ordinary differential equations*, Math. Comp.**29**(1975), 489–500. MR**0373290**, 10.1090/S0025-5718-1975-0373290-5**[11]**Peter Henrici,*Discrete variable methods in ordinary differential equations*, John Wiley & Sons, Inc., New York-London, 1962. MR**0135729****[12]**T. E. Hull, W. H. Enright, B. M. Fellen, and A. E. Sedgwick,*Comparing numerical methods for ordinary differential equations*, SIAM J. Numer. Anal.**9**(1972), 603–637; errata, ibid. 11 (1974), 681. MR**0351086****[13]**Rolf Jeltsch,*Stiff stability and its relation to 𝐴₀- and 𝐴(0)-stability*, SIAM J. Numer. Anal.**13**(1976), no. 1, 8–17. MR**0411174****[14]**Fred T. Krogh,*Algorithms for changing the step size*, SIAM J. Numer. Anal.**10**(1973), 949–965. MR**0356515****[15]**Fred T. Krogh,*A variable step, variable order multistep method for the numerical solution of ordinary differential equations*, Information Processing 68 (Proc. IFIP Congress, Edinburgh, 1968) North-Holland, Amsterdam, 1969, pp. 194–199. MR**0261790****[16]**Arnold Nordsieck,*On numerical integration of ordinary differential equations*, Math. Comp.**16**(1962), 22–49. MR**0136519**, 10.1090/S0025-5718-1962-0136519-5**[17]**Peter Piotrowski,*Stability, consistency and convergence of variable 𝑘-step methods for numerical integration of large systems of ordinary differential equations*, Conf. on Numerical Solution of Differential Equations (Dundee, 1969), Springer, Berlin, 1969, pp. 221–227. MR**0277116****[18]**A. SEDGWICK, (1973),*An Effective Variable Order Variable Step Adams Method*, Tech. Rep. No. 53, Dept. of Computer Science, Univ. of Toronto, Canada.**[19]**L. F. Shampine and M. K. Gordon,*Local error and variable order Adams codes*, Appl. Math. Comput.**1**(1975), no. 1, 47–66. MR**0373294****[20]**L. F. Shampine and M. K. Gordon,*Computer solution of ordinary differential equations*, W. H. Freeman and Co., San Francisco, Calif., 1975. The initial value problem. MR**0478627****[21]**K. W. TU, (1972),*Stability and Convergence of General Multistep and Multivalue Methods with Variable Step Size*, Report No. UIUCDCS-R-72-526, Dept. of Computer Science, Univ. of Illinois, Unbana.**[22]**C. S. Wallace and G. K. Gupta,*General linear multistep methods to solve ordinary differential equations*, Austral. Comput. J.**5**(1973), 62–69. MR**0362919**

Retrieve articles in *Mathematics of Computation*
with MSC:
65L05,
65D30

Retrieve articles in all journals with MSC: 65L05, 65D30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514814-8

Keywords:
Multistep methods,
stiff equations,
ordinary differential equations,
initial value problems

Article copyright:
© Copyright 1979
American Mathematical Society