Computer solution and perturbation analysis of generalized linear least squares problems
Author:
C. C. Paige
Journal:
Math. Comp. 33 (1979), 171183
MSC:
Primary 65D10; Secondary 65F35
MathSciNet review:
514817
Fulltext PDF Free Access
Abstract 
References 
Similar Articles 
Additional Information
Abstract: A new formulation of the generalized linear least squares problem is given. This is based on some ideas in estimation and allows complete generality in that there are no restrictions on the matrices involved. The formulation leads directly to a numerical algorithm involving orthogonal decompositions for solving the problem. A perturbation analysis of the problem is obtained by using the new formulation and some of the decompositions used in the solution. A rounding error analysis is given to show that the algorithm is numerically stable.
 [1]
Ȧke
Björck, A uniform numerical method for linear estimation from
general GaussMarkoff models, Compstat 1974 (Proc. Sympos.
Computational Statist., Univ. Vienna, Vienna, 1974) Physica Verlag,
Vienna, 1974, pp. 131–140. MR 0373173
(51 #9375)
 [2]
Ȧke
Björck, Solving linear least squares problems by GramSchmidt
orthogonalization, Nordisk Tidskr. InformationsBehandling
7 (1967), 1–21. MR 0214275
(35 #5126)
 [3]
Ȧke
Björck, Iterative refinement of linear least squares
solutions. I, Nordisk Tidskr. InformationsBehandling (BIT)
7 (1967), 257–278. MR 0233494
(38 #1815)
 [4]
Peter
Businger and Gene
H. Golub, Handbook series linear algebra. Linear least squares
solutions by Householder transformations, Numer. Math.
7 (1965), 269–276. MR 0176590
(31 #862)
 [5]
A.
K. Cline, An elimination method for the solution of linear least
squares problems, SIAM J. Numer. Anal. 10 (1973),
283–289. Collection of articles dedicated to the memory of George E.
Forsythe. MR
0359294 (50 #11748)
 [6]
G.
Golub, Numerical methods for solving linear least squares
problems, Numer. Math. 7 (1965), 206–216. MR 0181094
(31 #5323)
 [7]
G.
H. Golub and C.
Reinsch, Handbook Series Linear Algebra: Singular value
decomposition and least squares solutions, Numer. Math.
14 (1970), no. 5, 403–420. MR
1553974, http://dx.doi.org/10.1007/BF02163027
 [8]
Gene
H. Golub and George
P. H. Styan, Numerical computations for univariate linear
models, J. Statist. Comput. Simulation 2 (1973),
253–274. MR 0375649
(51 #11840)
 [9]
G.
H. Golub and J.
H. Wilkinson, Note on the iterative refinement of least squares
solution, Numer. Math. 9 (1966), 139–148. MR 0212984
(35 #3849)
 [10]
Charles
L. Lawson and Richard
J. Hanson, Solving least squares problems, PrenticeHall,
Inc., Englewood Cliffs, N.J., 1974. PrenticeHall Series in Automatic
Computation. MR
0366019 (51 #2270)
 [11]
G. PETERS & J. H. WILKINSON, "The least squares problem and pseudoinverses," Comput. J., v. 13, 1970, pp. 309316.
 [12]
G.
W. Stewart, On the continuity of the generalized inverse, SIAM
J. Appl. Math. 17 (1969), 33–45. MR 0245583
(39 #6889)
 [13]
G.
W. Stewart, On the perturbation of pseudoinverses, projections and
linear least squares problems, SIAM Rev. 19 (1977),
no. 4, 634–662. MR 0461871
(57 #1854)
 [14]
G. GOLUB, V. KLEMA, & G. W. STEWART, Rank Degeneracy and Least Squares Problems, Stanford University Computer Science Report STANCS76559, August, 1976.
 [15]
C.
Radhakrishna Rao, Linear statistical inference and its
applications, 2nd ed., John Wiley\thinspace&\thinspace Sons, New
YorkLondonSydney, 1973. Wiley Series in Probability and Mathematical
Statistics. MR
0346957 (49 #11677)
 [16]
G.
A. F. Seber, Linear regression analysis, John Wiley &
Sons, New YorkLondonSydney, 1977. Wiley Series in Probability and
Mathematical Statistics. MR 0436482
(55 #9428)
 [17]
C.
C. Paige and M.
A. Saunders, Least squares estimation of discrete linear dynamic
systems using orthogonal transformations, SIAM J. Numer. Anal.
14 (1977), no. 2, 180–193. MR 0437197
(55 #10130)
 [18]
S. KOUROUKLIS, Computing Weighted Linear Least Squares Solutions, McGill University School of Computer Science, M.Sc. Project, May 1977.
 [19]
G.
W. Stewart, Introduction to matrix computations, Academic
Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New
YorkLondon, 1973. Computer Science and Applied Mathematics. MR 0458818
(56 #17018)
 [20]
A.
van der Sluis, Stability of the solutions of linear least squares
problems, Numer. Math. 23 (1974/75), 241–254.
MR
0373259 (51 #9459)
 [21]
J.
H. Wilkinson, The algebraic eigenvalue problem, Clarendon
Press, Oxford, 1965. MR 0184422
(32 #1894)
 [22]
Sven
Hammarling, A note on modifications to the Givens plane
rotation, J. Inst. Math. Appl. 13 (1974),
215–218. MR 0343568
(49 #8309)
 [23]
C.
C. Paige, Fast numerically stable computations for generalized
linear least squares problems, SIAM J. Numer. Anal.
16 (1979), no. 1, 165–171. MR 518691
(80c:65034), http://dx.doi.org/10.1137/0716012
 [24]
C.
C. Paige, Numerically stable computations for general univariate
linear models, Comm. Statist. B—Simulation Comput.
7 (1978), no. 5, 437–453. MR 516832
(80g:62049)
 [1]
 Å. BJÖRCK, A Uniform Numerical Method for Linear Estimation from General GaussMarkoff Models,Proc. 1st. Sympos. on Computational Statistics (COMPSTAT), Vienna, 1974, pp. 131140. MR 0373173 (51:9375)
 [2]
 Å. BJÖRCK, "Solving linear least squares problems by GramSchmidt orthogonalization," BIT, v. 7, 1967, pp. 121. MR 0214275 (35:5126)
 [3]
 Å. BJÖRCK, "Iterative refinement of linear least squares solution. I, II," BIT, v. 7, 1967, pp. 251278; BIT, v. 8, 1968, pp. 830. MR 0233494 (38:1815)
 [4]
 P. BUSINGER & G. GOLUB, "Linear least squares solutions by Householder transformations," Numer. Math., v. 7, 1965, pp. 269276. MR 0176590 (31:862)
 [5]
 A. K. CLINE, "An elimination method for the solution of linear least squares problems," SIAM J. Numer. Anal., v. 10, 1973, pp. 283289. MR 0359294 (50:11748)
 [6]
 G. GOLUB, "Numerical methods for solving linear least squares problems," Numer. Math., v. 7, 1965, pp. 206216. MR 0181094 (31:5323)
 [7]
 G. H. GOLUB & C. REINSCH, "Singular value decomposition and least squares solutions," Numer. Math., v. 14, 1970, pp. 403420. MR 1553974
 [8]
 GENE H. GOLUB &. GEORGE P. H. STYAN, "Numerical computations for univariate linear models," J. Statist. Comp. and Simulation, v. 2, 1973, pp. 253274. MR 0375649 (51:11840)
 [9]
 G. H. GOLUB & J. H. WILKINSON, "Note on the iterative refinement of least squares solutions," Numer. Math., v. 9, 1966, pp. 139148. MR 0212984 (35:3849)
 [10]
 C. L. LAWSON & R. J. HANSON, Solving Least Squares Problems, PrenticeHall, Englewood Cliffs, N. J., 1974. MR 0366019 (51:2270)
 [11]
 G. PETERS & J. H. WILKINSON, "The least squares problem and pseudoinverses," Comput. J., v. 13, 1970, pp. 309316.
 [12]
 G. W. STEWART, "On the continuity of the generalized inverse," SIAM J. Appl. Math., v. 17, 1969, pp. 3345. MR 0245583 (39:6889)
 [13]
 G. W. STEWART, "On the perturbation of pseudoinverses, projections, and linear least squares problems," SIAM Rev., v. 19, 1977, pp. 634662. MR 0461871 (57:1854)
 [14]
 G. GOLUB, V. KLEMA, & G. W. STEWART, Rank Degeneracy and Least Squares Problems, Stanford University Computer Science Report STANCS76559, August, 1976.
 [15]
 C. R. RAO, Linear Statistical Inference and its Applications, Chapter 4, 2nd ed., Wiley, New York, 1973. MR 0346957 (49:11677)
 [16]
 G. A. F. SEBER, Linear Regression Analysis, Wiley, New York, 1977. MR 0436482 (55:9428)
 [17]
 C. C. PAIGE & M. A. SAUNDERS, "Least squares estimation of discrete linear dynamic systems using orthogonal transformations," SIAM J. Numer. Anal., v. 14, 1977, pp. 180193. MR 0437197 (55:10130)
 [18]
 S. KOUROUKLIS, Computing Weighted Linear Least Squares Solutions, McGill University School of Computer Science, M.Sc. Project, May 1977.
 [19]
 G. W. STEWART, Introduction to Matrix Computations, Academic Press, New York, 1973. MR 0458818 (56:17018)
 [20]
 A. VAN DER SLUIS, "Stability of the solutions of linear least squares problems," Numer. Math., v. 23, 1975, pp. 241254. MR 0373259 (51:9459)
 [21]
 J. H. WILKINSON, The Algebraic Eigenvalue Problem, Clarendon, Oxford, 1965. MR 0184422 (32:1894)
 [22]
 S. HAMMARLING, "A note on modifications to the Givens plane rotation," J. Inst. Math. Appl., v. 13, 1974, pp. 215218. MR 0343568 (49:8309)
 [23]
 C. C. PAIGE, "Fast numerically stable computations for generalized linear least squares problems," SIAM J. Numer. Anal. (To appear.) MR 518691 (80c:65034)
 [24]
 C. C. PAIGE, "Numerically stable computations for general univariate linear models," Comm. Statist. Ser. B, v. B7, No. 5, 1978. MR 516832 (80g:62049)
Similar Articles
Retrieve articles in Mathematics of Computation
with MSC:
65D10,
65F35
Retrieve articles in all journals
with MSC:
65D10,
65F35
Additional Information
DOI:
http://dx.doi.org/10.1090/S00255718197905148173
PII:
S 00255718(1979)05148173
Keywords:
Covariance matrices,
error analysis,
estimation of linear systems,
linear least squares,
matrix computations,
perturbation analysis,
regression analysis
Article copyright:
© Copyright 1979
American Mathematical Society
