Publications Meetings The Profession Membership Programs Math Samplings Policy & Advocacy In the News About the AMS

Remote Access
Green Open Access
Mathematics of Computation
Mathematics of Computation
ISSN 1088-6842(online) ISSN 0025-5718(print)


Note on the Kelvin phase functions

Author: J. R. Philip
Journal: Math. Comp. 33 (1979), 337-341
MSC: Primary 33A70
MathSciNet review: 514829
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Both theoretical consistency and practical convenience demand that the values of the Kelvin phase functions $ {\theta _n}(x)$ and $ {\phi _n}(x)$ be defined uniquely and be well-ordered in n. This is achieved by taking, for $ n \geqslant 0$, $ {\theta _n}(0) = - {\phi _n}(0) = 3n\pi /4$. The necessary amendments to extant tables are indicated.

References [Enhancements On Off] (What's this?)

  • [1] N. W. McLACHLAN, Bessel Functions for Engineers, Clarendon Press, Oxford, 1934.
  • [2] Bessel functions. Part IV: Kelvin functions, Prepared on behalf of The Mathematical Tables Committee by Andrew Young and Alan Kirk. Royal Society Mathematical Tables, Vol. 10, Published for the Royal Society at the Cambridge University Press, New York, 1964. MR 0164064 (29 #1363)
  • [3] E. JAHNKE, F. EMDE, & F. LÖSCH, Tables of Higher Functions, 6th ed., McGraw-Hill, New York, 1960. MR 22 #5140.
  • [4] A. FLETCHER, J. C. P. MILLER, L. ROSENHEAD, & L. J. COMRIE, An Index of Mathematical Tables, 2nd ed., vol. I, Addison-Wesley, Reading, Mass., 1962. MR 26 #365a.
  • [5] F. W. J. OLVER, "9. Bessel functions of integer order," in M. Abramowitz & I. A. Stegun (Editors), Handbook of Mathematical Functions, Nat. Bur. Standards Appl. Math. Series 55, U. S. Dept. Commerce, Washington, D. C., 1964. MR 29 #4914.
  • [6] J. R. PHILIP, "Diurnal cycles in the lower atmosphere," Boundary Layer Meteorology. (To appear.)
  • [7] N. W. McLACHLAN & A. L. MEYERS, "The polar form of the ker and kei functions, with applications to eddy current heating," Philos. Mag. (7), v. 18, 1934, pp. 610-624.
  • [8] N. W. McLACHLAN, Bessel Functions for Engineers, 2nd ed., Clarendon Press, Oxford, 1955.
  • [9] F. F. D. BISACRE, "The calculation of the skin effect in electrical conductors," Philos. Mag. (6), v. 45, 1923, pp. 1026-1049.

Similar Articles

Retrieve articles in Mathematics of Computation with MSC: 33A70

Retrieve articles in all journals with MSC: 33A70

Additional Information

PII: S 0025-5718(1979)0514829-X
Keywords: Kelvin phase functions
Article copyright: © Copyright 1979 American Mathematical Society

Comments: Email Webmaster

© Copyright , American Mathematical Society
Contact Us · Sitemap · Privacy Statement

Connect with us Facebook Twitter Google+ LinkedIn Instagram RSS feeds Blogs YouTube Podcasts Wikipedia