The Euclidean condition in pure cubic and complex quartic fields

Author:
Vincent G. Cioffari

Journal:
Math. Comp. **33** (1979), 389-398

MSC:
Primary 12A30

MathSciNet review:
514835

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: In this paper we prove that a field is euclidean with respect to the ordinary norm if and only if or 10. We also prove that certain fields of the form , are or are not euclidean.

**[1]**J. W. S. Cassels,*The inhomogeneous minimum of binary quadratic, ternary cubic and quaternary quartic forms*, Proc. Cambridge Philos. Soc.**48**(1952), 72–86. MR**0047709****[2]**H. C. WILLIAMS, From a computer print-out, done recently at the University of Manitoba.**[3]**H. J. Godwin,*On Euclid’s algorithm in some cubic fields with signature one*, Quart. J. Math. Oxford Ser. (2)**18**(1967), 333–338. MR**0219509****[4]**Elizabeth M. Taylor,*Euclid’s algorithm in cubic fields with complex conjugates*, J. London Math. Soc. (2)**14**(1976), no. 1, 49–54. MR**0419399****[5]**C. CHEVALLEY,*C. R. Acad. Sci. Paris*, v. 192, 1931, pp. 257-258.**[6]**Richard B. Lakein,*Euclid’s algorithm in complex quartic fields*, Acta Arith.**20**(1972), 393–400. MR**0304350**

Retrieve articles in *Mathematics of Computation*
with MSC:
12A30

Retrieve articles in all journals with MSC: 12A30

Additional Information

DOI:
https://doi.org/10.1090/S0025-5718-1979-0514835-5

Article copyright:
© Copyright 1979
American Mathematical Society